Appendix 5 – Air Quality Impact Assessment Methodology

Table A:	Significance	Criteria for	Assessing	Magnitude of I	mpact.
----------	--------------	--------------	-----------	----------------	--------

Nitrogen Dioxide (NO ₂)						
Major Adverse	'With development' results in an increase in concentrations over 'without					
	development' concentrations of greater than 1 μ g/m ³ or 2.5%; where 'without					
	development' concentrations are predicted to exceed the 40 $\mu\text{g/m-}^3$ objective					
	limit value; or					
	'With development' results in increases in concentrations greater than 1 μ g/m ³					
	or 2.5% that are predicted to cause exceedance of the 40 $\mu\text{g/m-}^3$ objective limit					
	value; where WITHOUT development concentrations are NOT predicted to					
	exceed 40 µg/m-3 objective limit value; or					
	'With development' results in an increase in concentrations over 'without					
	development' greater than 25%.					
Moderate	'With development results in an increase in concentrations over 'without					
Adverse	development' concentrations of less than 1 μ g/m ³ or 2.5%; where 'without					
	development' concentrations are predicted to exceed the 40 µg/m-3 objective					
	limit value;					
	'With development' results in an increase in concentrations over 'without					
	development' of greater than 10% but less than 25%					
Minor Adverse	'With development' results in an increase in concentrations over 'without					
	development' concentrations of greater than 2.5% but less than 10%					
No significance	'With development' results in a change in concentrations over 'without					
/ insignificant	development' concentrations of less than 1 µg/m ³ or 2.5%					
Minor beneficial	With development results in a decrease in concentrations over without					
	development concentrations of greater than 2.5% but less than 10%.					
Moderate	With development results in a decrease in concentrations over without					
beneficial	development concentrations of greater than 10% but less than 25%.					
Major beneficial	With development results in a decrease in concentrations over without					
	development concentrations of greater than 25%					
Particulate Matt	er (PM ₁₀)					
Major Adverse	With development results in an increase in concentrations over without					
	development concentrations of greater than I μ g/m ³ or 2.5%; where without					
	development concentrations are predicted to exceed the 40 µg/m ³ objective					
	limit value or					
	With development results in increases in concentrations greater than 1 µg/m ³					
	or 2.5% that are predicted to cause exceedance of the 40 µg/m ³ objecti					
	value; where without development concentrations are not predicted to e					
	40 μg/m³ objective limit value					
	With development results in an increase in concentrations over without					
	development greater than 25%					
Moderate	With development results in increases in concentrations greater than 1 μ g/m ³ or					
Adverse	2.5% but the actual concentration does not cause an exceedance of the					
	40µg/m ³ objective limit or					

	With development results in an increase in concentrations over without				
	development concentrations of less than 1 or 2.5%; where without development				
	concentrations are predicted to exceed 40 µg/m³ objective limit value or				
	With development results in an increase in concentrations over without				
	development greater than 10% but less than 25%				
Minor Adverse	With development results in an increase in concentrations over without				
	development concentrations of greater than $1\mu g/m^3$ or 2.5% but less than 10%				
No	With development results in concentrations over without development				
significance/	concentrations of less than 1 µg/m3 or 2.5%				
insignificant					
Minor beneficial	With development results in a decrease in concentrations over without				
	development concentrations of greater than $1\mu\text{g/m}^3$ or 2.5% but less than %				
Moderate	With development results in a decrease in concentrations over without				
beneficial	development concentrations of greater than 10% but less than 25%				
Major beneficial	With development results in a decrease in concentrations over without				
	development concentrations of greater than 25%				
NOTES	Where air quality impacts meet multiple criteria, the higher significance class				
	will be applied.				

Table B: Methodology for Determining Sensitivity.

Sensitivity	Examples	
High	The location has little ability to absorb change without fundamentally altering	
	its present character, or is of international or national importance.	
Moderate	The location has moderate capacity to absorb change without significantly	
	altering its present character, or is of high importance.	
Low	The location is tolerant of change without detriment to its character, is of low	
	or local importance.	

The significance of an impact from vehicular emissions is determined by the interaction of magnitude and sensitivity. The Impact Significance Matrix used in this assessment is set out Appendix H.

Table C: Impact Significance Matrix.

Magnitude	Sensitivity				
	High	Moderate	Low		
Major	Major	Major – Moderate	Moderate – Minor		
	Adverse/Beneficial	Adverse/Beneficial	Adverse/Beneficial		
Moderate	Major – Moderate	Moderate – Minor	Minor		
	Adverse/Beneficial	Adverse/Beneficial	Adverse/Beneficial		
Minor	Moderate – Minor	Minor	Minor – Negligible		
	Adverse/Beneficial	Adverse/Beneficial			
Negligible /	Negligible /	Negligible /	Negligible /		
Insignificant	Insignificant	Insignificant	Insignificant		