17. Appendix B Hydrological Technical Note

17B. Hydrological Technical Note

Project	A9 Dualling: Kincraig to Dalraddy
Subject	Hydrology Technical note
Date	18th October 2013

1. Introduction

An Environmental Statement (ES) for the proposed A9 Dualling: Kincraig to Dalraddy has been prepared by Atkins and published in November 2013. SEPA highlighted during consultation on the ES that the earthworks at the Allt an Fhearna and Dunachton Burn would potentially encroach onto the Indicative Flood Outlines and recommended a Flood Risk Assessment (FRA) was undertaken to assess any risk to the area.

Hydrological and hydraulic modelling was undertaken to support the FRA. This technical note provides a summary of the hydrological modelling. The Flood Estimation Handbook (FEH) calculation record appended to this document provides fuller detail.

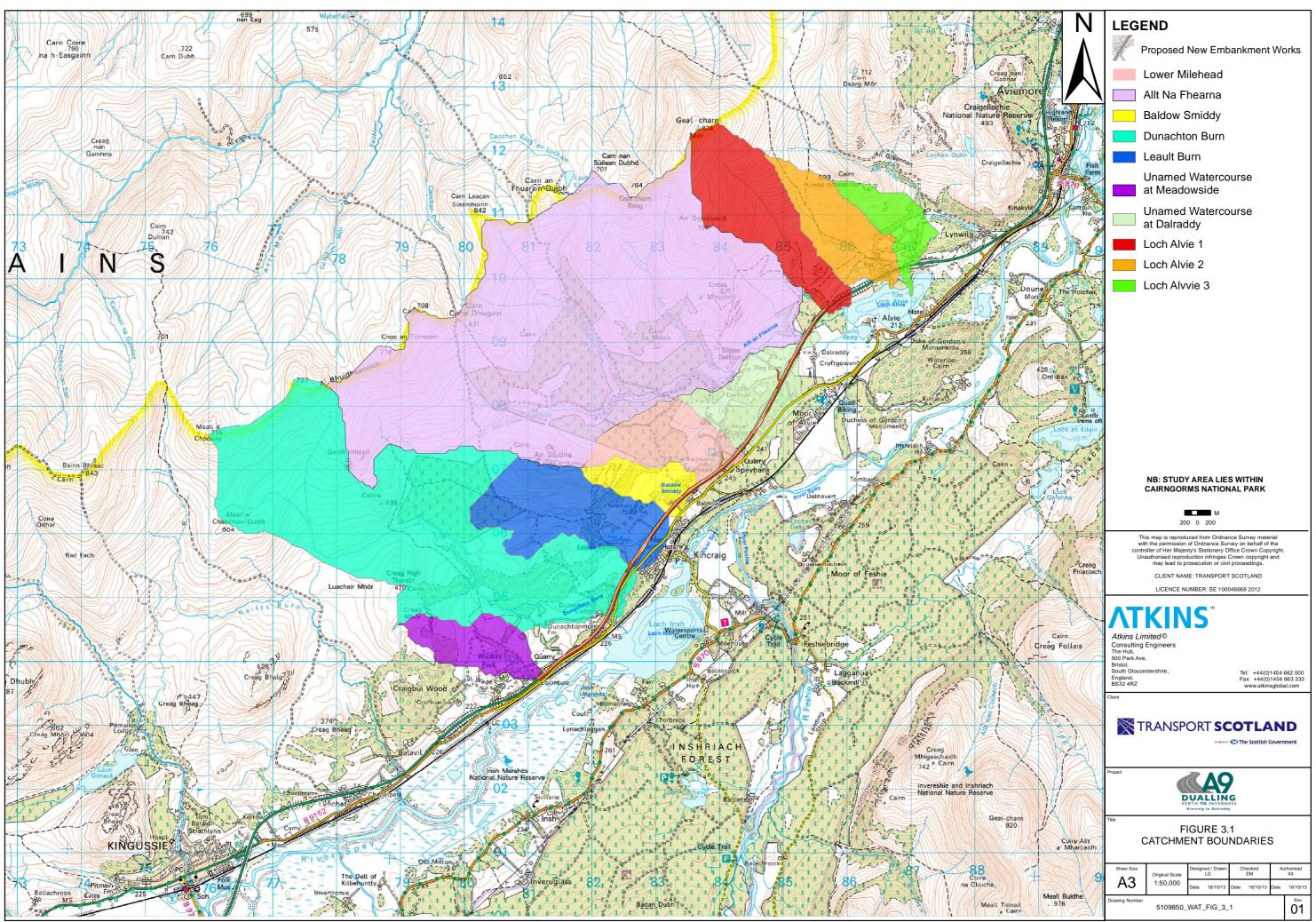
The proposed development crosses six watercourses:

- Unnamed Watercourse at Meadowside (Chainage 0000 metres)
- Dunachton Underpass/Watercourse (Chainage 1660 metres)
- Leault Burn Watercourse (Chainage 3090 metres)
- Baldow Smiddy Underpass/Watercourse (Chainage 3540 metres)
- Unnamed Watercourse at Dalraddy (Chainage 7025)
- Allt an Fhearna Underpass/Watercourse (Chainage 7050 metres).

The proposed structures are detailed in the FRA. During consultation (dated 19.12.12), SEPA expressed concern that the proposed embankments for the A9 Dualling at the Allt an Fhearna were encroaching onto the functional flood plain. The SEPA Indicative Flood Risk Map also showed flooding at the Dunachton Burn crossing. Historical flood records showed reports of flooding at a property adjacent to the unnamed watercourse at Meadowside.

The aim of the hydrological analysis was to derive design flow estimation for input into the InfoWorks RS hydraulic model. Design peak flows and hydrographs were derived using the Flood Estimation Handbook (FEH) for the following events: 50%, 20%, 10%, 5%, 1%, 0.5% and 0.5% with 20% increase in flow as climate change allowance. The hydrological model was built in accordance with UK industry procedures set out in FEH and subsequent related research. This technical note summaries the FEH calculation record, which follows this document.

Hydrometric Data


2.

There was no hydrometric data on any of the watercourses that are crossed by the proposed Scheme. The nearest gauging station to the site is Spey at Kinrara (8002), which is located on the River Spey approximately 1.36 miles upstream of the confluence of the subject sites. The FEH catchment area for the Spey at Kinrara is 1009 km₂ which is 50 times greater than the catchment for the largest watercourse within the subject site. It is also influenced by Loch Inch. Due to the differences in catchment descriptors the gauging station was considered not suitable within this study.

3. Catchment Delineation

Catchment boundaries for each subject site were delineated using the FEH CD Rom (version 3.0) and checked using OS mapping, with adjustments to the boundaries where necessary. The table and figure below highlight the catchments assessed (Table 3.1 and Figure 3.1).

Watercourse	Site	Easting	Northing	AREA on FEH CD-ROM (km2)	Revised AREA if altered
Dunachton Burn	Where A9 crosses watercourse	282400	804750	11.92	12.56
Leault Burn	Where A9 crosses watercourse	283200	806050	11.92	3.40
Baldow Smiddy	Where A9 crosses watercourse	283450	806300	0.91	1.06
Unnamed watercourse at Dalraddy	Where A9 crosses watercourse	285550	809100	1.78	1.74
Allt na Fhearna	Where A9 crosses watercourse	285300	809100	20.03	20.00
Loch Alvie outflow	Downstream of the loch – includes Allt an Fhearna and unnamed watercourse as well as rivers flowing directly into the loch	287290	809390	31.56	31.82
Unnamed watercourse at Meadowside	Where A9 crosses watercourse at the entrance to the Wildlife Park. (approximately 1.1km from scheme)	281140	803720	1.38	NA
Lower Milehead	Lateral	284000	806950		1.84
Allt Chriochaidh (Loch Alvie 1)	Inflow to Loch Alvie	286000	809600	2.81	2.98
Caochan Ruadh (Loch Alvie 2)	Upstream of Ballinluig inflow to Loch Alvie	286700	809850	1.91	1.84
Unnamed watercourse 3 (Loch Alvie 3)	Inflow to Loch Alvie south of Ballinluig	287000	809750	0.99	1.01

Path: P:\GBGWA\Environment\Rivers & Coastal\Projects\5109850 A9 Kincraig to Dalraddy\070 - Work Process, Other\076 - ArcGIS\Projects\A9_Carriageway_Dualing_Catchment_Boundaries_Fig_3_1.mxd

4. Design Flow Estimates

A number of hydrological estimation techniques were used as both hydrographs and peak flows were required. The FEH statistical method and rainfall runoff method were used to obtain the peak flow and hydrographs. The IH124 was also used as it is suitable for smaller catchments. Results were compared and final peak flows were determined.

4.1. FEH Statistical Method

The statistical method uses an index flood, the median annual flood (QMED). This is multiplied by a growth curve to obtain a flood frequency curve. The flood frequency curve is based on a sample of 500 years of data from catchments identified as being similar to the subject site. All calculations were undertaken using WINFAP FEH 3 software and are recorded in a FEH Calculation Record, which is appended to this technical note.

QMED values estimated for the subject sites are shown in Table 4.1. QMED was derived from catchment descriptors. As there were no suitable donor catchments no adjustments were made. The confidence intervals are shown in the FEH Calculation Record.

Site	QMED (m ³ /s) derived from Catchment Descriptors
Dunachton Burn	5.33
Leault Burn	0.98
Baldow Smiddy	0.20
Unnamed watercourse at Dalraddy	0.19
Allt na Fhearna	10.39
Loch Alvie outflow	11.01
Unnamed watercourse at Meadowside	0.4
Lower Milehead	0.50
Allt Chriochaidh (Loch Alvie 1)	1.98
Caochan Ruadh (Loch Alvie 2)	0.90
Unnamed watercourse 3 (Loch Alvie 3)	0.34

Table 4-1 Qmed Estimates

Growth curves were established using the pooled analysis, with the growth curve factors for the 100 year return period shown in Table 4.2 below.

Table 4-2

Growth Curves from Pooled Analysis

Site	Growth Curve Factor for 100-year return period
Dunachton Burn	2.94
Leault Burn	2.92
Baldow Smiddy	2.92
Unnamed watercourse at Dalraddy	2.91
Allt na Fhearna	2.69
Loch Alvie outflow	2.54
Unnamed watercourse at Meadowside	2.92
Lower Milehead	2.86
Allt Chriochaidh (Loch Alvie 1)	2.95
Caochan Ruadh (Loch Alvie 2)	2.92
Unnamed watercourse 3 (Loch Alvie 3)	2.91

4.2. FEH Rainfall Runoff Method

The rainfall runoff method uses the FEH DDF (depth duration frequency) model to estimate rainfall totals which are then distributed according to either a 75% winter or 50% summer profile. They take account of the Catchment Wetness index (CWI) which is estimated for the SAAR (Standard Average Annual Rainfall) and base flow which is calculated using equation 2.19 in the FEH volume 4. Flows are estimated using the unit hydrograph and losses model. For the design events, the rainfall totals, rainfall profiles, CWI, base flow and unit hydrograph and losses model for each sub-catchment were estimated using FEH boundaries in ISIS modelling software.

The design storm duration was calculated using the Time to peak (Tp) and Standard Average Annual Rainfall (SAAR) using equation 3.1 in FEH volume 4. Table 4.3 shows the initial storm duration used to estimate the design flows.

Table 4-3Initial Storm Duration

Site	Storm Duration (hrs)
Dunachton Burn	5.5
Leault Burn	3.5
Baldow Smiddy	2.1
Unnamed watercourse at Dalraddy	3.9
Allt na Fhearna	4.9
Loch Alvie outflow	5.1
Unnamed watercourse at Meadowside	2.7
Lower Milehead	2.7
Allt Chriochaidh (Loch Alvie 1)	3.3
Caochan Ruadh (Loch Alvie 2)	2.7
Unnamed watercourse 3 (Loch Alvie 3)	2.3

The rainfall runoff peak flows were estimated from FEH boundary units in ISIS and are shown in Table 4.4 below.

Table 4-4

Rainfall Runoff Peak Flows (m3/s)

Site	50%	20%	10%	5%	2%	1%	0.5%	0.5%+ cc
Dunachton Burn	7.22	9.87	11.75	14.52	17.33	20.00	23.19	27.83
Leault Burn	2.00	2.78	3.34	4.15	4.85	5.72	6.71	8.27
Baldow Smiddy	0.59	0.84	1.01	1.03	1.49	1.71	2.06	2.59
Unnamed watercourse at Dalraddy	0.51	0.69	0.81	0.99	1.13	1.36	1.62	2.01
Allt na Fhearna	13.27	18.14	21.60	26.59	31.73	36.62	42.44	51.52
Loch Alvie outflow	17.42	23.62	28.00	34.30	40.75	47.04	54.48	66.08
Unnamed watercourse at Meadowside	0.92	1.30	1.57	1.97	2.30	2.69	3.19	3.83
Lower Milehead	1.36	1.90	2.28	2.85	3.33	3.88	4.57	5.48
Allt Chriochaidh (Loch Alvie 1)	2.31	3.15	3.74	4.59	5.32	6.20	7.21	8.65
Caochan Ruadh (Loch Alvie 2)	1.42	1.95	2.33	2.88	3.34	3.84	4.50	5.40
Unnamed watercourse 3 (Loch Alvie 3)	0.65	0.89	1.06	1.32	1.53	1.74	2.06	2.47

4.3. Institute of Hydrology Report 124

The IH124 method calculates the Tp and QBAR (mean annual flood) for small catchments using the following parameters:

- AREA;
- SAAR;
- Soil; and
- Urban Extent

The value derived for QBAR is multiplied by the regional growth curve value, which is presented in the Flood Studies Report supplementary report No. 14.

The peak flows for the unnamed catchment were calculated using this method, with the results shown in Table 4.5 below.

Site	50%	20%	10%	5%	2%	1%	0.5%	0.5%+ cc
Dunachton Burn	0.69	0.92	1.10	1.39	1.90	2.14	2.57	2.49
Unnamed watercourse 1	0.88	1.17	1.41	1.76	2.06	2.41	2.72	3.26
Unnamed watercourse 2	0.91	1.21	1.46	1.82	2.13	2.49	2.82	3.38
Lower Milehead	1.18	1.57	1.90	2.37	2.77	3.24	3.66	4.39
Loch Alvie 1	2.36	3.15	3.81	4.75	5.57	6.51	7.35	8.82
Loch Alvie 2	1.33	1.77	2.14	2.67	3.13	3.66	4.13	4.95
Loch Alvie 3	0.74	0.98	1.19	1.48	1.74	2.03	2.29	2.75

Table 4-5Peak Flows from Unnamed Catchment

4.4 Final Hydrological Estimates

A hybrid approach was used for the final inflow to the hydraulic model. The rainfall runoff hydrograph were scaled to the statistical peak flows. In general the FEH statistical method is preferred to the rainfallrunoff method for estimating design flood flows. This is because the statistical method is based on a much larger data set of flood events and also it has been more directly calibrated to reproduce flood frequency in UK catchments. Recent guidance from the Environment Agency (June 2012) stated the FEH statistical method should be the preferred option as this method uses flow datasets based on real data. The statistical peak flows were chosen as final estimates for all catchments to maintain continuity in approach. The rainfall runoff peaks were used in the model as a sensitivity check (see Hydraulic Technical Note) following consultation with SEPA.

The flood frequency was calculated for all sites using pooled growth curves. Hydrograph shapes were obtained using the FEH rainfall-runoff method and scaled to fit the peak estimated using the statistical method. The final flow estimations for the model inflows are shown in Table 4.6. Peak flows were also estimated at the downstream model extent as a check.

Site	50%	20%	10%	5%	2%	1%	0.5%	0.5%+ cc	0.2%
Dunachton Burn	5.21	7.17	8.67	10.93	12.96	15.35	18.16	21.79	22.69
Leault Burn	0.98	1.34	1.61	2.04	2.42	2.87	3.41	4.09	4.28
Baldow Smiddy	0.20	0.28	0.34	0.42	0.50	0.59	0.71	0.85	0.89
Unnamed watercourse 1	0.19	0.26	0.32	0.40	0.48	0.56	0.68	0.816	0.84
Allt na Fhearna	10.39	13.99	16.65	20.56	23.98	27.90	32.43	38.92	39.55
Loch Alvie outflow	11.01	14.77	17.43	21.20	24.39	27.93	31.92	38.30	37.96
Unnamed watercourse 2	0.40	0.54	0.65	0.82	0.97	1.16	1.37	1.64	1.72
Lower Milehead	0.50	0.68	0.82	1.03	1.21	1.44	1.70	2.04	2.12
Loch Alvie 1	1.98	2.70	3.26	4.12	5.91	5.84	6.95	8.34	8.76
Loch Alvie 2	0.90	1.23	1.48	1.87	2.22	2.63	3.13	3.76	3.93
Loch Alvie 3	0.34	0.46	0.56	0.70	0.84	0.99	1.18	1.42	1.48

Introduction

This document is a supporting document to the Environment Agency's flood estimation guidelines. It provides a record of the calculations and decisions made during flood estimation. It will often be complemented by more general hydrological information given in a project report. The information given here should enable the work to be reproduced in the future. This version of the record is for studies where flood estimates are needed at multiple locations.

Contents

	Page
1	METHOD STATEMENT 3
2	LOCATIONS WHERE FLOOD ESTIMATES REQUIRED6
3	STATISTICAL METHOD8
4	FEH RAINFALL-RUNOFF METHOD 22
5	SMALL CATCHMENT METHODS 24
6	DISCUSSION AND SUMMARY OF RESULTS 25
7	ANNEX - SUPPORTING INFORMATION 28

Approval

	Signature	Name and qualifications	For Environment Agency staff: Competence level (see below)
Calculations prepared by:		Evelyn Mackay	
Calculations checked by:		Rhona Hutton	
Calculations approved by:		Mike Vaughan	

Environment Agency competence levels are covered in <u>Section 2.1</u> of the flood estimation guidelines:

• Level 1 – Hydrologist with minimum approved experience in flood estimation

• Level 2 - Senior Hydrologist

• Level 3 – Senior Hydrologist with extensive experience of flood estimation

ABBREVIATIONS

AM AREA BFI BFIHOST CFMP CPRE FARL FEH FSR HOST NRFA POT QMED ReFH SAAR SPR SPRHOST Tp(0) URBAN URBEXT1990	Annual Maximum Catchment area (km ²) Base Flow Index Base Flow Index derived using the HOST soil classification Catchment Flood Management Plan Council for the Protection of Rural England FEH index of flood attenuation due to reservoirs and lakes Flood Estimation Handbook Flood Studies Report Hydrology of Soil Types National River Flow Archive Peaks Over a Threshold Median Annual Flood (with return period 2 years) Revitalised Flood Hydrograph method Standard Average Annual Rainfall (mm) Standard percentage runoff Standard percentage runoff derived using the HOST soil classification Time to peak of the instantaneous unit hydrograph Flood Studies Report index of fractional urban extent FEH index of fractional urban extent
URBEXT1990	

1.1 Overview of requirements for flood estimates

Item	Comments
 Give an overview which includes: Purpose of study Approx. no. of flood estimates required Peak flows or hydrographs? Range of return periods and locations Approx. time available 	Estimates required for six watercourses crossing the A9 between Kincraig and Dalraddy. These are the unnamed watercourse at Meadowside (281140 803720), Dunachton Burn, Leault Burn, Baldow Smiddy, Allt an Fhearna, an unnamed watercourse at Dalraddy (285238, 808892). In addition inflows are required for the three tributaries to Loch Alvie and for the Lower Milehead which is a lateral flow. Hydrographs for all estimates are required. Return periods required are: 2, 5, 10, 25, 50, 100, 200, 500, and 200+20% increase for climate change

1.2 Overview of catchment

ltem	Comments
Brief description of catchment, or reference to section in accompanying report	All watercourses are tributaries to the River Spey. The area of interest is where these watercourses cross the A9. Downstream of this is Loch Alvie, the Insh Marshes and Loch Insh. The River Spey is one of the largest rivers in Scotland, the study area is in the middle reach of the Spey. The proposed A9 dualling reach is located parallel to the River Spey. The six tributaries that are being assessed have a predominantly rural catchment.

1.3 Source of flood peak data

Was the HiFlows UK dataset used? If so, which version? If not, why not? Record any changes made	Yes – Version 3.1.2, December 2011
---	------------------------------------

1.4 Gauging stations (flow or level)

(at the sites of fl Water- course	lood estimates of Station name	or nearby at potential donor sit Gauging NRFA authority number number (used in		tes) Grid reference	Catch- ment area	Type (rated / ultrasonic	Start and end of flow
			FEH)		(km²)	/ level)	record
Spey	Spey at Kinrara	PR00800 1	8002	NH88100 820	1011.7	VA	1951 - Present

1.5 Data available at each flow gauging station

Station name	Start and end of data in HiFlows- UK	Update for this study?	Suitable for QMED?	Suitable for pooling?	Data quality check needed?	Other comments on station and flow data quality – e.g. information from HiFlows-UK, trends in flood peaks, outliers.
-----------------	--	------------------------------	--------------------------	-----------------------------	-------------------------------------	---

Station name	Start and end of data in HiFlows- UK	Update for this study?	Suitable for QMED?	Suitable for pooling?	Data quality check needed?	Other comments on station and flow data quality – e.g. information from HiFlows-UK, trends in flood peaks, outliers.
Spey at Kinrara	1951 - 2001	N/A	Yes	Yes		380km ² developed for hydropower with diversions and storage; substantial net export. Reservoirs for hydropower; Spey dam (1944), Loch an T-Seilish (1941), and Cuaich (1961)
Give link/reference to any further data quality checks carried out						

1.6 Rating equations

Station name			Reasons – e.g. availability of recent flow gaugings, amount of scatter in the rating.
Spey at Kinrara	theoretical	No	Max stage to 2m
Give link/refer reviews carried	ence to any rating I out		

1.7 Other data available and how it has been obtained

Type of data	Data relevant to this study?	Data available ?	Source of data and licence reference if from EA	Date obtained	Details
Check flow gaugings (if planned to review ratings)		No			
Historic flood data – give link to historic review if carried out.	Yes	Yes – Biennial Flood Reports	Highland Council	May 2013	See FRA for historical flooding details
Flow data for events		No			
Rainfall data for events		No			
Potential evaporation data		No			
Results from previous studies		No known studies			
Other data or information (e.g. groundwater, tides)		No			

1.8 Initial choice of approach

Is FEH appropriate? (it may not be for very small, heavily urbanised or complex	Yes. For the both unnamed watercourse, Baldow Smiddy Lower Milehead and the three Loch Alvie inflows
catchments) If not, describe other methods to	IH 124 will also be used as the catchment is 1.74km ² ,
be used.	1.33km ² , 1.06 km ² , 1.84 km ² , 2.98 km ² , 1.84 km ² and 1.01 km ² .

 Outline the conceptual model, addressing questions such as: Where are the main sites of interest? What is likely to cause flooding at those locations? (peak flows, flood volumes, combinations of peaks, groundwater, snowmelt, tides) Might those locations flood from runoff generated on part of the catchment only, e.g. downstream of a reservoir? Is there a need to consider temporary debris dams that could collapse? 	 Sites of interest are where the A9 crosses the tributaries, These are listed below. a. Dunachton Burn – 282330, 804880 b. Leault Burn – 282960, 806030 c. Baldow Smiddy – 283290, 809440 d. Unnamed watercourse at Dalraddy – 285220, 808880 e. Allt an Fhearna – 285350, 809150 f. Unnamed tributary at Meadowside 281200, 803750 g. Lower Milehead – 284000 806950 Likely cause of flooding would be volume of runoff. At Allt an Fhearna, immediately downstream of the A9 crossing, the area is characterised as marshy wetlands as water flows into Loch Alvie and Loch Beag. Lower Milehead has a FARL value of 0.878. This is not a catchment which will be hydraulically modelled.
 e.g. highly permeable – avoid ReFH if BFIHOST>0.65, consider permeable catchment adjustment for statistical method if SPRHOST<20% highly urbanised – avoid standard ReFH if URBEXT1990>0.125; consider FEH Statistical or other alternatives; consider method that can account for differing sewer and topographic catchments pumped watercourse – consider lowland catchment version of rainfall-runoff method major reservoir influence (FARL<0.90) – consider flood routing extensive floodplain storage – consider choice of method carefully 	
Initial <u>choice of method(s)</u> and reasons Will the catchment be split into subcatchments? If so, how?	Allt an Fhearna catchment split into the Allt an Fhearna and the unnamed watercourse at Dalraddy. A larger catchment incorporating these two watercourses is assessed at the inflow of Loch Alvie. All flows estimated using FEH statistical method, IH124 methodology used as a check for the unnamed watercourse and Baldow Smiddy as the catchment is 1.74km ² and 1.06km ² .
Software to be used (with version numbers)	FEH CD-ROM v3.0 ¹ WINFAP-FEH v3.0.002 ² ISIS

¹ FEH CD-ROM v3.0 © NERC (CEH). © Crown copyright. © AA. 2009. All rights reserved.

 $^{^2}$ WINFAP-FEH v3 \odot Wallingford HydroSolutions Limited and NERC (CEH) 2009.

2 Locations where flood estimates required

The table below lists the locations of subject sites. The site codes listed below are used in all subsequent tables to save space.

Site code	Watercourse	Site	Easting	Northing	AREA on FEH CD- ROM (km ²)	Revised AREA if altered	
Dun_1	Dunachton Burn	Where A9 crosses watercourse	282400	804750	11.92	12.56	
Lea_2	Leault Burn	Where A9 crosses watercourse	283200	806050	2.74	3.40	
Bal_3	Baldow Smiddy	Where A9 crosses watercourse	283450	806300	0.91	1.06	
Unn_4	Unnamed watercourse at Dalraddy	Where A9 crosses watercourse	285550	809100	1.78	1.74	
All_5	Allt na Fhearna	Where A9 crosses watercourse	285300	809100	20.03	20.00	
Loch_6	Loch Alvie outflow	Dowsntream of the loch – includes Allt an Fhearna and unnamed watercourse as well as rivers flowing directly into the loch	287290	809390	31.56	31.82	
Unn_7	Unnamed watercourse at Meadowside	Where the A9 crosses the watercourse at the entrance to the Wildlife Park.	281140	803720	1.38	-	
Lower Mile 1	Lower Milehead	Lateral area to account for flow crossing the A9 at Milehead	284000	806950		1.84	
Loch Alvie 1	Allt Chriochaidh	Inflow to Loch Alvie	286000	809600	2.81	2.98	
Loch Alvie 2	Caochan Ruadh	Upstream of Ballinluig inflow to Loch Alvie	286700	809850	1.91	1.84	
Loch Alvie 3	Unnamed	Inflow to Loch Alvie south of Ballinluig	287000	809750	0.99	1.01	
Reasons f above loca	or choosing ations	Loch Alvie 1-3 were chosen as direct inflows to Loch Alvie, as flooding is reported to be influence by levels in the loch level. Loch_6 is the downstream boundary for the model. All other inflows are locations where the A9 dualling crosses the watercourses.					

2.1 Summary of subject sites

2.2 Important catchment descriptors at each subject site (incorporating any changes made)

Site code	FARL	PROPWET	BFIHOST	DPLBAR (km)	DPSBAR (m/km)	SAAR (mm)	SPRHOST	URBEXT
Dun_01	1	0.68	0.494	5.33	114.2	1015	46.37	0.000
Lea_02	1	0.68	0.583	2.29	139.3	912	39.08	0.000
Bal_3	1	0.68	0.687	0.95	125	851	30.31	0.000
Unn_4	1	0.68	0.816	1.76	44.7	850	20.08	0.000

Site code	FARL	PROPWET	BFIHOST	DPLBAR (km)	DPSBAR (m/km)	SAAR (mm)	SPRHOST	URBEXT
All_5	1	0.68	0.435	5.23	182.8	1075	47.1	0.000
Loch_6	0.991	0.68	0.511	5.45	161.5	1025	41.15	0.000
Unn_7	1.	0.68	0.619	1.48	112.4	876	37.88	0.000
Lower Mile 1	0.878	0.68	0.494	1.43	103	881	41.24	0.000
Loch Alvie 1	1	0.68	0.468	2.6	209.5	1108	41.36	0.000
Loch Alvie 2	1	0.68	0.517	1.74	190.2	977	38.73	0.000
Loch Alvie 3	1	0.68	0.623	1.6	198.3	933	31.77	0.000

2.3 Checking catchment descriptors

Record how catchment boundary was checked and describe any changes (refer to maps if needed)	Catchment boundaries were checked using the OS Open data – 1:50 000 and adjusted accordingly
Record how other catchment descriptors (especially soils) were checked and describe any changes. Include before/after table if necessary.	WRAP maps from FSR were checked. The study area has WRAP class 5 – Soils of the wet uplands.
Source of URBEXT	URBEXT2000
Method for updating of URBEXT	CPRE formula from FEH Volume 4

3 Statistical method

3.1 Search for donor sites for QMED (if applicable)

 Comment on potential donor sites Mention: Number of potential donor sites available Distances from subject site Similarity in terms of AREA, BFIHOST, FARL and other catchment descriptors Quality of flood peak data Include a map if necessary. Note that donor 	No donor sites were identified. The closest gauging station is Spey at Kinrara(8002), which is located on the River Spey approximately 1.36miles upstream of the confluence of the subject sites. The AREA of the Spey at Kinrara is 1009km ² which is 50 times greater than the largest subject site. The subjects site are not influenced by the lochs and therefore have a FARL of 1.00. Spey at Kinrara is influence by the Loch Inch and therefore not considered a suitable donor site.
	FARL of 1.00. Spey at Kinrara is influence by the Loch Inch and therefore not considered a suitable donor site.

3.2 Donor sites chosen and QMED adjustment factors

NRFA no.	Reasons fo rejecting	or choosing o	r Method (AM or POT)	Adjust- ment for climatic variation?	QMED from flow data (A)	QMED from catchment descriptors (B)	Adjust- ment ratio (A/B)
8002	Influence by Lo and is rejected	och Inch FARL 0.92 I.	7 AMAX	-	145.5	295.686	0.492
Which version of the urban adjustment was used for QMED at donor sites, and why?						EH v3.0.003	
Note: The guidelines recommend great caution in urban adjustment of QMED on catchments that are also highly permeable (BFIHOST>0.8).							

3.3 Overview of estimation of QMED at each subject site

				Data transfer					
			NRFA numbers for		Moderated QMED adjustment	If more than one donor			
Site code	Method	Initial estimate of QMED (m ³ /s)	donor sites used (see 3.3)	Distance between centroids d _{ij} (km)	Power term, a		Weight	Weighted average adjustment factor	Final estimate of QMED (m³/s)
Dun_1	CD	5.33	None	-	-	-	-	-	5.33
Lea_2	CD	0.98	None	-	-	-	-	-	0.98
Bal_3	CD	0.20	None	-	-	-	-	-	0.20
Unn_4	CD	0.19	None	-	-	-	-	-	0.19
All_5	CD	10.392	None	-	-	-	-	-	10.39
Loch_ 6	CD	11.008	None	-	-	-	-	-	11.01
Unn_7	CD	0.396	None	-	-	-	-	-	0.40
Lower Mile	CD	0.501	None						0.50

				Data transfer					
		NRFA numbers for			Moderated QMED adjustment factor,	If more than one donor			
Site code	Method	Initial estimate of QMED (m ³ /s)	donor sites used (see 3.3)	Distance (between Power	(A/B) ^a	Weight	Weighted average adjustment factor	Final estimate of QMED (m³/s)	
Loch Alvie 1	CD	1.976	None						1.98
Loch Alvie 2	CD	0.9	None						0.90
Loch Alvie 3	CD	0.34	None						0.34
Are the values of QMED consistent, for example at successive points along the watercourse and at confluences?					Yes				
Which version of the urban adjustment was used for QMED, and why?					N/A				
Notes						•			

Methods: AM – Annual maxima; POT – Peaks over threshold; DT – Data transfer; CD – Catchment descriptors alone. When QMED is estimated from POT data, it should also be adjusted for climatic variation. Details should be added.

When QMED is estimated from catchment descriptors, the revised 2008 equation from Science Report SC050050Error! Bookmark not defined. Should be used. If the original FEH equation has been used, say so and give he reason why.

The guidelines recommend great caution in urban adjustment of QMED on catchments that are also highly permeable (BFIHOST>0.8). The adjustment method used in WINFAP-FEH v3.0.003 is likely to overestimate adjustment factors for such catchments. In this case the only reliable flood estimates are likely to be derived from local flow data.

The data transfer procedure is from Science Report SC050050. The QMED adjustment factor A/B for each donor site is given in Table 3.3. This is moderated using the power term, a, which is a function of the distance between the centroids of the subject catchment and the donor catchment. The final estimate of QMED is (A/B)^a times the initial estimate from catchment descriptors.

If more than one donor has been used, use multiple rows for the site and give the weights used in the averaging. Record the weighted average adjustment factor in the penultimate column.

3.4 Derivation of pooling groups

The composition of the pooling groups is given in the Annex. Several subject sites may use the same pooling group.

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Dun_1		n	Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 44008 S th Winterbourne@W'bourne Steepleton – chalk catchment, SPRHOST=19.55 Removed 22003 Usway Burn@Shillmoor – L- moments negatively skewed,, record length 13 years which is a little short. Removed 32029 Flore @experimental as it had a short record – 5 years. SAAR low. Removed 50009 Lew @Norley Bridge – Negative L-skew, gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 73015 Keer@High Keer Weir – flat Amax Removed 44809 Piddle@Puddle – chalk catchment. SPR low at 12.27 Removed other sites to bring length of record closer to 500 years	L-CV = 0.229 L-skew = 0.248

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Lea_2			Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 32029 Flore@Experimental catchment, Record only 5 years, SAAR low Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 54091 Severn@ Hafren Flume – flat Amax, negative skew, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 54092 Severn @Hore Flume – Flat Amax, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 44008 S'th Winterbourne@W'bourne – chalk catchment, SPR 19.55 Removed 50009 Lew@norley Bridge – discordant, negative Lskew and gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 22003 Usway Burn@Shillmoor, L- moments negatively skewed, record length a little short (13 years) Removed 27032 Hebden Beck @ Hebden – flat Amax series with few peaks. Removed 27073 Brompton Beck@Snainton lngs – large groundwater component, unresponsive catchment, SPR 17.77.	L-CV = 0.221 L-Skew = 0.259

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Bal_03			Removed 32029 Flore@Experimental catchment, Record only 5 years, SAAR low Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 54092 Severn@Hore Flume – flat Amax, negative skew, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 54091 Severn@Halfren – flat Amax, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 27073 Hebden Beck@Hebden – flat Amax with few peaks Removed 44008 Sth Winterbourne@W'bourne – chalk catchment SPR 19.55 Removed 50009 Lew@Norley Bridge discordant, negative Lskew and gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 22003 Usway Burn @shillmoor – L- moments negatively skewed, record length 13 years	L-CV = 0.220 L-Skew = 0.260

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Unn_4			Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 32029 Flore@Experimental catchment, Record only 5 years, SAAR low Removed 27073 Brompton Beck@Snainton Ings – large groundwater component, non responsive catchment unrepresentative of topographical area, SPRHOST = 17.77 Removed 54091 Severn@Halfren – Flat Amax drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 54092 Severn @ Hore Flume – Flat Amax negative skew, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 44008 – S'th Winterbourne @ W'bourne chalk catchment SPR 19.55 Removed 50009 Lew@ Norley Bridge discordant, negative Lskew and gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 22003 Usway Burn@Shillmoor – L moments negatively skewed, record length 13 years	L-CV = 0.219 L-Skew = 0.260

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban
		single site analysis)		adjustment)
AII_5			Removed 44008 S th Winterbourne@W'bourne Steepleton – chalk catchment, SPRHOST=19.55 Removed 22003 Usway Burn@Shillmoor – L- moments negatively skewed, record length 13 years which is a little short. Removed 44809 Piddle @LittlePuddle. Predominantly lower chalk, SPRHOST= 12.27 Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 50009 Lew@Norley Bridge discordant, negative Lskew and gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 73015 Keer@High Keer Weir – flat Amax Removed 206004 Bessbrook@Carnbane – Low SPR, flat Amax Other sites removed to bring length of record to 500 years	L-CV = 0.214 L-Skew = 0.217
Loch_6			Removed 44008 S th Winterbourne@W'bourne Steepleton – chalk catchment, SPRHOST=19.55 Removed 22003 Usway Burn@Shillmoor – L- moments negatively skewed, record length 13 years which is a little short. Removed 44809 Piddle @LittlePuddle. Predominantly lower chalk, SPRHOST= 12.27 Removed 43806 Wylie @Brixton. Chalk catchment, SPR=8.34 Removed 50009 Lew @Norley Bridge discordant, negative Lskew and gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 73015 Keer @High Keer Weir – Flat Amax Removed 206004 BessBrock. Low SPR Flat Amax graph Removed 203046 Rathmore – Flat Amax graph 76811 – Dacre Beck @ Dacre Bridge. Short record length. 49004 – Gannel @ Gwills. With Caution, scatter in gauging, potential bypassing.	L-CV = 0.215 L-Skew = 0.175

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Unn_7			Removed 54092 Severn @ Hore Flume discordant, negative skew. Flat Amax, drowning may occur following big floods owing to sediment deposited d/s User should apply own judgement as to whether to include in pooling group. Removed 54091 Severn @ Hafren Flume – flat Amax, negative skew, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 32029 Flore @experimental as it had a short record – 5 years. SAAR low. Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 27073 Brompton Beck@Snainton Ings – large groundwater component, unresponsive catchment, SPR 17.77. Removed 44008 S th Winterbourne@W'bourne Steepleton – chalk catchment, SPRHOST=19.55 Removed 5009 Lew @Norley Bridge – Negative L-skew, gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 22003 Usway Burn@Shillmoor – L- moments negatively skewed, Record length 13 years – too short.	L-CV = 0.221 L-Skew = 0.260

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Lower Mile			Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 32029 Flore @experimental as it had a short record – 5 years. SAAR low. Removed 54092 Severn @ Hore Flume discordant, negative skew. Flat Amax, drowning may occur following big floods owing to sediment deposited d/s User should apply own judgement as to whether to include in pooling group. Removed 54091 Severn@ Hafren Flume – flat Amax, negative skew, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 27073 Brompton Beck@Snainton Ings – large groundwater component, unresponsive catchment, SPR 17.77. Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 50009 Lew @Norley Bridge – Negative L-skew, gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 22003 Usway Burn@Shillmoor – L- moments negatively skewed, Record length 13 years – too short.	L-CV:0.218 L-Skew:0.252

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Loch Alvie 1			Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 54092 Severn @ Hore Flume discordant, negative skew. Flat Amax, drowning may occur following big floods owing to sediment deposited d/s User should apply own judgement as to whether to include in pooling group. Removed 54091 Severn@ Hafren Flume – flat Amax, negative skew, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 32029 Flore @experimental as it had a short record – 5 years. SAAR low. Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 50009 Lew @Norley Bridge – Negative L-skew, gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 22003 Usway Burn@Shillmoor – L- moments negatively skewed, Record length 13 years – too short. Additional sites removed to reduce pooling group to ~500years	L-CV: 0.222 L-Skew:0.265

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Loch Alvie 2			Removed 54092 Severn @ Hore Flume discordant, negative skew. Flat Amax, drowning may occur following big floods owing to sediment deposited d/s User should apply own judgement as to whether to include in pooling group. Removed 54091 Severn@ Hafren Flume – flat Amax, negative skew, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 32029 Flore @experimental as it had a short record – 5 years. SAAR low. Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 27073 Brompton Beck@Snainton Ings – large groundwater component, unresponsive catchment, SPR 17.77. Removed 44008 S th Winterbourne@W'bourne Steepleton – chalk catchment, SPRHOST=19.55 Removed 50009 Lew @Norley Bridge – Negative L-skew, gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 22003 Usway Burn@Shillmoor – L- moments negatively skewed, Record length 13 years – too short.	L-CV: 0.221 L-Skew: 0.260

Name of group	Site code from whose descriptors group was derived	Subject site treated as gauged? (enhanced single site analysis)	Changes made to default pooling group, with reasons Note also any sites that were investigated but retained in the group.	Weighted average L- moments, L-CV and L-skew, (before urban adjustment)
Loch Alvie3			Removed 54092 Severn @ Hore Flume discordant, negative skew. Flat Amax, drowning may occur following big floods owing to sediment deposited d/s User should apply own judgement as to whether to include in pooling group. Removed 54091 Severn @ Hafren Flume – flat Amax, negative skew, drowning may occur following big floods owing to sediment deposited d/s, user should apply own judgement as whether to include in pooling group. Removed 44009 Wey@Broadwey – predominantly limestone, SPRHOST = 17.16 Removed 32029 Flore @experimental as it had a short record – 5 years. SAAR low. Removed 44006 Sydling Water@Sydling St Nicholas – Predominantly chalk catchment, SPRHOST = 13.35 Removed 26802 Gypsey Race@kirby Grindalythe – hydrological response predominantly dominated by groundwater, SPRHOST = 5.67 Removed 44008 S th Winterbourne@W'bourne Steepleton – chalk catchment, SPRHOST=19.55 Removed 27073 Brompton Beck@Snainton Ings – large groundwater component, unresponsive catchment, SPR 17.77. Removed 50009 Lew @Norley Bridge – Negative L-skew, gauge is bypassed. Flat growth curve indicates that highest flows are not captured by the gauge. Removed 22003 Usway Burn@Shillmoor – L- moments negatively skewed, Record length 13 years – too short.	L-CV:0.220 L-Skew:0.260

Notes

Pooling groups were derived using the revised procedures from Science Report SC050050 (2008). Amend if not applicable. The weighted average L-moments, before urban adjustment, can be found at the bottom of the Pooling-group details window in WINFAP-FEH.

Site code	Method (SS, P, ESS, J)	If P, ESS or J, name of pooling group (3.4)	Distribution used and reason for choice	Note any urban adjustment or permeable adjustment	Parameters of distribution (location, scale and shape) after adjustments	Growth factor for 100-year return period
Dun_1	Ρ	Dunachton _3	GL – Recommended for UK Flood data. Selected by WINFAP as best fit	N/A	Location: 1.00 Scale: 0.227 Shape: -0.248	2.943
Lea_2	Ρ	Leault_3	GL – Recommended for UK Flood, Z Value indicated no preferred distribution	N/A	Location: 1.00 Scale: 0.218 Shape: -0.259	2.921
Bal_3	Ρ	Baldow_3	GL – Recommended for UK Flood data, Z Value indicated no preferred distribution	N/A	Location: 1.00 Scale: 0.216 Shape: -0.260	2.915
Unn_4	Ρ	Unnamed_ 3	GL – Recommended for UK Flood data., Z Value indicated no preferred distribution.	N/A	Location: 1.00 Scale: 0.215 Shape: -0.260	2.908
All_5	Ρ	AlltanFhear n_3	GL - Recommended for UK Flood data GEV also provides an acceptable fit but not used	N/A	Location: 1.00 Scale:0.214 Shape: -0.217	2.685
Loch_ 6	Ρ	Downstrea m of Loch_3	GL - Recommended for UK Flood data GEV also provides an acceptable fit but not used	N/A	Location: 1.00 Scale:0.218 I Shape: -0.175	2.537
Unn_7	Ρ	Unnamed_ 7	GL – Recommended for UK Flood data, Z Value indicated no preferred distribution.	N/A	Location: 1.00 Scale: 0.217 Shape: -0.260	2.919
Lower Milehe ad	Ρ		GL – Recommended for UK Flood data, Z Value indicated no preferred distribution.	N/A	Location:1.00 Scale: 0.215 Shape:-0.252	2.863

3.5 Derivation of flood growth curves at subject sites

Site code	Method (SS, P, ESS, J)	If P, ESS or J, name of pooling group (3.4)	Distribution used and reason for choice	Note any urban adjustment or permeable adjustment	Parameters of distribution (location, scale and shape) after adjustments	Growth factor for 100-year return period
Loch Alvie 1	Ρ	Loch Alvie 1	GL – Recommended for UK Flood data, Z Value indicated no preferred distribution	N/A	Location:1.00 Scale: 0.218 Shape: -0.264	2.954
Loch Alvie 2	Ρ	Loch Alvie 2	GL – Recommended for UK Flood data, Z Value indicated no preferred distribution	N/A	Location: 1.00 Scale: 0.217 Shape:-0.260	2.923
Loch Alvie 3	Ρ	Loch Alvie 3	GL – Recommended for UK Flood data, Z Value indicated no preferred distribution.	N/A	Locatiion:1.00 Scale: 0.216 Shape: -0.260	2.914

Notes

Methods: SS - Single site; P - Pooled; ESS - Enhanced single site; J - Joint analysis

A pooling group (or ESS analysis) derived at one gauge can be applied to estimate growth curves at a number of ungauged sites. Each site may have a different urban adjustment, and therefore different growth curve parameters. Urban adjustments to growth curves should use the version 3 option in WINFAP-FEH: Kjeldsen (2010).

Growth curves were derived using the revised procedures from Science Report SC050050 (2008). Amend if not applicable.

Any relevant frequency plots from WINFAP-FEH, particularly showing any comparisons between single-site and pooled growth curves (including flood peak data on the plot), should be shown here or in a project report.

Site		Floo	od peak (m	³ /s) for the	following	return per	riods (in ye	ears)	
code	2	5	10	25	50	100	200	200+CC	500
DUN_1	5.33	7.33	8.86	11.17	13.25	15.69	18.56	22.27	23.20
Lea_2	0.98	1.34	1.61	2.04	2.42	2.87	3.41	4.09	4.28
Bal_3	0.20	0.28	0.34	0.42	0.50	0.59	0.71	0.85	0.89
Unn_4	0.19	0.26	0.32	0.40	0.48	0.56	0.68	0.81	0.84
All_5	10.39	13.99	16.65	20.56	23.98	27.90	32.43	38.92	39.55
Loch_6	11.01	14.77	17.43	21.20	24.39	27.93	31.92	38.30	37.96
Unn_7	0.40	0.54	0.65	0.82	0.97	1.16	1.37	1.64	1.72
Lower Milehea d	0.50	0.68	0.82	1.03	1.21	1.44	1.70	2.04	2.12
Loch Alvie 1	1.98	2.70	3.26	4.12	5.91	5.84	6.95	8.34	8.76
Loch Alvie 2	0.90	1.23	1.48	1.87	2.22	2.63	3.13	3.76	3.93
Loch Alvie 3	0.34	0.46	0.56	0.70	0.84	0.99	1.18	1.42	1.48

3.6 Flood estimates from the statistical method

FEH rainfall-runoff method 4

4.1 Parameters for FEH rainfall-runoff model

Methods:

FEA : Flood event analysis

1040.	•	-/ (•	i lood of offic ana
	L	AG	:	Catchment lag

DT : Catchment descriptors with data transfer from donor catchment

- CD : Catchment descriptors alone BFI : SPR derived from baseflow index calculated from flow data

Site code	Rural (R) or urban (U)	Tp(0): method	Tp(0): value (hours)	SPR: method	SPR: value (%)	BF: method	BF: value (m³/s)	If DT, numbers of donor sites used (see Section 5.2) and reasons
DUN_01	R	CD	2.783	CD	46.370	CD	0.379	
LEA_02	R	CD	1.666	CD	39.080	CD	0.083	
BAL_03	R	CD	1.093	CD	30.310	CD	0.023	
UNN_04	R	CD	2.136	CD	20.080	CD	0.043	
ALL_05	R	CD	2.345	CD	47.100	CD	0.641	
LOCH_06	R	CD	2.499	CD	41.15	CD	0.970	
Unn_07	R	CD	1.426	CD	37.88	CD	0.035	
Lower Milehead	R	CD	1.443	CD	41.24	CD	0.047	
Loch Alvie 1	R	CD	1.55	CD	41.36	CD	0.098	
Loch Alvie 2	R	CD	1.299	CD	38.73	CD	0.053	
Loch Alvie 3	R	CD	1.226	CD	31.77	CD	0.028	

4.2 Donor sites for FEH rainfall-runoff parameters

N 0.	Watercourse	Station	Tp(0) from data (A)	Tp(0) from CDs (B)	Adjustment ratio for Tp(0) (A/B)	SPR from data (C)	SPR from CDs (D)	Adjust- ment ratio for SPR (C/D)
1								
2								

4.3 Inputs to and outputs from FEH rainfall-runoff model

Site code	Storm	Storm	Flo	Flood peaks (m ³ /s) for the following return periods (in years)								
	duration (hours)	area for ARF (if not catchment area)	2	5	10	25	50	100	200	200+C C	500	
Dun_01	5.5		7.22	9.87	11.75	14.52	17.33	20.00	23.19	27.83	28.16	
Lea_02	3.5		2.00	2.78	3.34	4.15	4.85	5.72	6.71	8.05	8.27	
Bal_03	2.1		0.59	0.84	1.01	1.027	1.49	1.71	2.06	2.47	2.59	
Unn_04	3.9		0.51	0.69	0.81	0.99	1.13	1.36	1.62	1.94	2.01	
All_05	4.9		13.27	18.14	21.60	26.59	31.73	36.62	42.44	50.93	51.52	
Loch_06	5.1		17.42	23.62	28.00	34.30	40.75	47.04	54.48	65.38	66.08	
UNN_7	2.7		0.92	1.30	1.57	1.97	2.30	2.69	3.19	3.83	3.96	

Site code	Storm	Storm	Flo	ood pea	ks (m³/s	s) for th	e follow	ving retu	ırn perioo	ds (in yea	rs)
	duration (hours)	area for ARF (if not catchment area)	2	5	10	25	50	100	200	200+C C	500
Lower Milehead	2.7		1.36	1.90	2.28	2.85	3.33	3.88	4.57	5.48	5.64
Loch Alvie 1	3.3		2.31	3.15	3.74	4.59	5.32	6.20	7.21	8.65	8.76
Loch Alvie 2	2.7		1.42	1.95	2.33	2.88	3.34	3.84	4.50	5.4	5.51
Loch Alvie 3	2.3		0.65	0.89	1.06	1.32	1.53	1.74	2.06	2.47	2.55
	m durations l of the study, e odel?	Storm	durations	to be op	timised w	ithin the hy	/draulic mo	dels.			

5 Small catchment methods

This section records any estimates of design flows for small catchments using methods other than the FEH. In this case, the Institute of Hydrology Report 124 method has been used as an alternative. Other methods can be added or substituted if needed.

Site code	Area (km²)	SAAR ₄₁₇₀ (mm)	URBAN (fraction)		soil type	hment co s given or R Volume	n Figure I		Hydrometric area
				1	2	3	4	5	
BAL_3	1.055	851	0.0					1	1
UNN_4	1.739	850	0.0					1	1
UNN_7	1.38	876	0.0					1	1
Lower Milehead	1.84	881	0.0					1	1
Loch Alvie 1	2.98	1108	0.0					1	1
Loch Alvie 2	1.84	977	0.0					1	1
Loch Alvie 3	1.01	933	0.0					1	1

5.1 Parameters for IH Report 124 method

5.2 Flood estimates from the IH Report 124 method at each subject site

0:14 - 44 - 14	Flood peak (m ³ /s) for the following return periods (in years)								
Site code	2	5	10	25	50	100	200	200+cc	500
BAL_3	0.69	0.92	1.10	1.39	1.62	1.90	2.14	2.57	2.49
UNN_4	0.88	1.17	1.41	1.76	2.06	2.41	2.72	3.26	3.16
UNN_7	0.91	1.21	1.46	1.82	2.13	2.49	2.82	3.38	3.27
Lower Milehead	1.18	1.57	1.90	2.37	2.77	3.24	3.66	4.39	4.25
Loch Alvie 1	2.36	3.15	3.81	4.75	5.57	6.51	7.35	8.82	8.53
Loch Alvie 2	1.33	1.77	2.14	2.67	3.13	3.66	4.13	4.95	4.79
Loch Alvie 3	0.74	0.98	1.19	1.48	1.74	2.03	2.29	2.75	2.66

6.1 Comparison of results from different methods

This table compares peak flows from various methods with those from the FEH Statistical method at example sites for two key return periods. Blank cells indicate that results for a particular site were not calculated using that method.

	Ratio of peak flow to FEH Statistical peak								
Site code	Return perio	od 2 years	Return period 100 years						
	Rainfall Runoff	IH124	Rainfall Runoff	IH124					
DUN_01	1.35		1.27						
LEA_02	2.04		1.99						
BAL_03	2.95	3.45	2.90	3.22					
UNN_04	2.68	4.40	2.43	4.08					
ALL_05	1.28		1.31						
LOCH_06	1.58		1.46						
UNN_07	2.30	2.28	2.32	2.15					
Lower Milehead	2.72	2.36	2.69	2.25					
Loch Alvie 1	1.17	1.19	1.06	1.11					
Loch Alvie 2	1.58	1.48	1.46	1.39					
Loch Alvie 3	1.91	2.18	1.76	2.05					

Site Code	QMED	QBAR	Ratio
BAL_03	0.20	0.77	3.85
UNN_04	0.19	0.97	5.11
UNN_07	0.396	1.01	2.55
Lower Milehead	0.501	1.31	2.61
Loch Alvie 1	1.976	2.63	1.33
Loch Alvie 2	0.9	1.47	1.63
Loch Alvie 3	0.34	0.82	2.41

6.2 Final choice of method

Choice of method and reasons – include reference to type of study, nature of catchment and type of data available.	FEH statistical method has been used to provide the peak flows with the FEH rainfall runoff being used to generate the hydrographs. The statistical approach was chosen for peak flows as this is based on a calibrated dataset for the pooling group and hence the growth curve, rather than catchment descriptors alone.

6.3 Assumptions, limitations and uncertainty

List the main <u>assumptions</u> made (specific to this study)	
Discuss any particular <u>limitations</u> , e.g. applying methods outside the range of catchment types or return periods for which they were	There is uncertainty attached with the results as this is an ungauged catchment, and there is no known anecdotal information to compare results against.

developed	
Give what information you can on <u>uncertainty</u> in the results – e.g. confidence limits for the QMED estimates using FEH 3 12.5 or the factorial standard error from Science Report SC050050 (2008).	Uncertainty in QMED estimated from catchment descriptors for the 68% and 95% confidence interval is shown below for each catchment including the upper and lower confidence intervals. 68% Confidence Interval Dun_01 = $(5.33/1.43, 5.33x1.43)$ $3.72, 7.62$ Lea_02 = $(0.983/1.43, 0.983x1.43)$ $0.687, 1.406$ Bal_03 = $(0.204/1.43, 0.983x1.43)$ $0.136, 0.292$ Unn_04 = $(0.194/1.43, 0.194x1.43)$ $0.136, 0.292$ Unn_04 = $(0.194/1.43, 10.392x1.43)$ $7.267, 14.861$ Loch_06 = $(11.008/1.43, 10.392x1.43)$ $7.267, 14.861$ Loch_06 = $(11.008/1.43, 0.396x1.43)$ $0.28, 0.57$ Lower Milehead = $(0.501/1.43, 0.501x1.43)$ $0.35, 0.72$ Loch Alvie 1 = $(1.976/1.43, 1.976x1.43)$ $1.38, 2.83$ Loch Alvie 2 = $(0.90/1.43, 0.90x1.43)$ $0.63, 1.29$ Loch Alvie 3 = $(0.34/1.43, 0.34x1.43)$ $0.24, 0.49$ 95% Confidence Interval Dun_01 = $(5.33/2.04, 5.33x2.04)$ $2.61, 10.87$ Lea_02 = $(0.983/2.04, 0.983x2.04)$ $0.1482, 2.01$ Bal_03 = $(0.204/2.04, 0.194x2.04)$ $0.095, 0.396$ All_05 = $(11.008/2.04, 1.0392x2.04)$ $5.394, 22.201$ Loch_16 = $(11.008/2.04, 1.0392x2.04)$ $5.396, 22.456$ Unn_07 = $(0.396/2.04, 0.396x2.04)$ $0.19, 0.81$ Lower Milehead = $(0.501/2.04, 0.501x2.04)$ $0.25, 1.02$ Loch Alvie 1 = $(1.976/2.04, 1.976x2.04)$ $0.97, 4.03$ Loch Alvie 2 = $(0.90/2.04, 0.90x2.04)$ $0.44, 1.84$ Loch Alvie 3 = $(0.34/2.04, 0.34x2.04)$ $0.17, 0.69$ Based on a fraction error of 1.43 from Flood Estimation Guidelines: Operational Instructions 197_08 Issued June 2012
Comment on the suitability of the results for future studies, e.g. at nearby locations or for different purposes.	Suitable for use for studies immediately downstream of A9 crossings.
Give any other comments on the study, for example suggestions for additional work.	

6.4 Checks

Are the results consistent, for example at confluences?	
What do the results imply regarding the return periods of floods during the period of record?	
What is the 100-year growth factor? Is this realistic? (The guidance suggests a typical range of 2.1 to 4.0)	All within range
If 1000-year flows have been derived, what is the range of ratios for 1000-year flow over 100-year	N/A

flow?	
What range of specific runoffs (I/s/ha) do the results equate to? Are there any inconsistencies?	
How do the results compare with those of other studies? Explain any differences and conclude which results should be preferred.	N/A
Are the results compatible with the longer-term flood history?	
Describe any other checks on the results	N/A

6.5 Final results

0:42 - 24 - 14	Flood peak (m ³ /s) for the following return periods (in years)								
Site code	2	5	10	25	50	100	200	200+CC	500
DUN_01	5.21	7.17	8.67	10.93	12.96	15.35	18.16	21.79	22.69
Lea_02	0.98	1.34	1.61	2.04	2.42	2.87	3.41	4.09	4.28
Bal_03	0.20	0.28	0.34	0.42	0.50	0.59	0.71	0.85	0.89
Unn_04	0.19	0.26	0.32	0.40	0.48	0.56	0.68	0.82	0.84
All_05	10.39	13.99	16.65	20.56	23.98	27.90	32.43	38.92	39.55
Loch_06	11.01	14.77	17.43	21.20	24.39	27.93	31.92	38.30	37.96
Unn_07	0.40	0.54	0.65	0.82	0.97	1.16	1.37	1.64	1.72
Lower Milehead	0.50	0.68	0.82	1.03	1.21	1.44	1.70	2.04	2.12
Loch Alvie 1	1.98	2.70	3.26	4.12	5.91	5.84	6.95	8.34	8.76
Loch Alvie 2	0.90	1.23	1.48	1.87	2.22	2.63	3.13	3.76	3.93
Loch Alvie 3	0.34	0.46	0.56	0.70	0.84	0.99	1.18	1.42	1.48

If flood hydrographs are needed for the next stage of the study, where are they provided? (e.g. give filename of spreadsheet, name of ISIS model, or reference to table below)	FEH_MC.add FEH P:\GBGWA\Environment\Rivers & Coastal\Projects\5109850 A9 Kincraig to Dalraddy\060 - Work Process, General\063 - Calculations\Hydrology\Rainfall Runoff
--	---

7.1 Pooling group composition

<u>Dunn_001</u>

Station		Years of data
25019	Leven @ Easby	31
27010	Hodge Beck @ Bransdale Weir	41
27051	Crimple @ Burn Bridge	37
25011	Langdon Beck @ Langdon	23
28033	Dove @ Hollinsclough	30
45816	Haddeo @ Upton	16
203046	Rathmore Burn @ Rathmore Bridge	27
206006	Annalong @ Recorder 1895	48
27032	Hebden Beck @ Hebden	43
48009	st Neot @ Craigshill Wood	12
48004	Warleggan @ Trengoffe	40
25003	Trout Beck @ Moor House	36
203049	Clady @ Clady Bridge	27
49003	de Lank @ de Lank	43
25012	Harwood Beck @ Harwood	40
72014	Conder @ Galgate	42

Total 536 Weighted means

L-CV: 0.229

🛃 Heterogeneity measure de 🔳 🗖 🗙	🗐 Goodness-of-fit details
Number of simulations 500 Edit No. Simulations	Number of simulations 500 Edit No. Simulations
Observed average 0.1122 Simulated mean of average 0.0926	Fitting Z value
Simulated S.D. of average 0.0171	Gen. Logistic -0.5776 ×
Standardised test value H2 1.1485	Gen. Extreme Value -2.0484
The pooling group is possibly heterogeneous and a review of the pooling group is optional.	Pearson Type III -2.6156 Gen. Pareto -5.5911
Standard deviation of L-CV	Lowest absolute Z-value indicates best fit
Observed 0.0502	* Distribution gives an acceptable fit (absolute Z value < 1.645)
Simulated mean 0.0336	
Simulated S.D. 0.0073	Save Cancel
Standardised test value H1 2.2777	
Heterogeneous	
Save Cancel	

<u>Lea 02</u>

Station 45817 76011 45816 27051 28033 25011 25019 91802 25003 206006 54022 27010 203046	Rhb Trib to Haddeo @ Upton trib Coal Burn @ Coalburn Haddeo @ Upton Crimple @ Burn Bridge Dove @ Hollinsclough Langdon Beck @ Langdon Leven @ Easby Allt Leachdach @ Intake Trout Beck @ Moor House Annalong @ Recorder 1895 Severn @ Plynlimon Flume Hodge Beck @ Bransdale Weir Rathmore Burn @ Rathmore Bridge	Years of data 16 32 16 37 30 23 31 34 36 48 38 41 27 11
	•	

Total 502 Weighted means

L-CV: 0.223

🗾 Heterogeneity measure d	de 🔳 🗖 🗙	🗐 Goodness-of-fit details
L-CV / L-skewness distance	Edit No. Simulations	Number of simulations 500 Edit No. Simulations
Simulated mean of average 0).1234).0952).0178	Fitting Z value Gen. Logistic -2.6999
-	1.5859	Gen. Extreme Value -4.0993
The pooling group is possibly heterogeneous and a review of group is optional.	f the pooling	Pearson Type III -4.7151 Gen. Pareto -7.5296
Standard deviation of L-CV		Lowest absolute Z-value indicates best fit
Observed 0	0.0598	* Distribution gives an acceptable fit (absolute Z value < 1.645)
Simulated mean 0	0.0340	
	0.0078	Save Cancel
Standardised test value H1 3	3.3129	
Heterogeneous		
Save Ca	ncel	

<u>Bal 03</u>

Station		Years of data
45817	Rhb Trib to Haddeo @ Upton trib	16
76011	Coal Burn @ Coalburn	32
45816	Haddeo @ Upton	16
27051	Crimple @ Burn Bridge	37
28033	Dove @ Hollinsclough	30
91802	Allt Leachdach @ Intake	34
54022	Severn @ Plynlimon Flume	38
25011	Langdon Beck @ Langdon	23
25003	Trout Beck @ Moor House	36
25019	Leven @ Easby	31
206006	Annalong @ Recorder 1895	48
27010	Hodge Beck @ Bransdale Weir	41
203046	Rathmore Burn @ Rathmore Bridge	27
27032	Hebden Beck @ Hebden	43
56007	Senni @ Pont Hen Hafod	41
49003	de Lank @ de Lank	43

Total 536 Weighted means

L-CV: 0.220

🛃 Heterogeneity measure	e de 🔳 🗖 🗙	🖬 Goodness-of-fit details
Number of simulations 500	Edit No. Simulations	Number of simulations 500 Edit No. Simulations
Observed average Simulated mean of average Simulated S.D. of average Standardised test value H2	0.1115 0.0933 0.0175 1.0419	Fitting Z value Gen. Logistic -2.5034 Gen. Extreme Value -3.8840
The pooling group is possibly heterogeneous and a review group is optional.		Pearson Type III -4.5149 Gen. Pareto -7.2866
Standard deviation of L-CV		Lowest absolute Z-value indicates best fit
Observed	0.0571	* Distribution gives an acceptable fit (absolute Z value < 1.645)
Simulated mean	0.0331	
Simulated S.D.	0.0077	Save Cancel
Standardised test value H1	3.1211	
Heterogeneous	Cancel	

<u>Unn_004</u>

Station		Years of data
76011	(Coal Burn @ Coalburn)	32
45817	(Rhb Trib to Haddeo @ Upton (trib))	16
45816	(Haddeo @ Upton)	16
27051	(Crimple @ Burn Bridge)	37
28033 (Dove @ Hollinsclough)	30
91802	(Allt Leachdach @ Intake)	34
25011	(Langdon Beck @ Langdon)	23
25003	(Trout Beck @ Moor House)	36
25019	(Leven @ Easby)	31
54022	(Severn @ Plynlimon Flume)	38
206006	(Annalong @ Recorder 1895)	48
27010	(Hodge Beck @ Bransdale Weir)	41
203046	(Rathmore Burn @ Rathmore Bridge)	27
49003	(de Lank @ de Lank)	43
56007	(Senni @ Pont Hen Hafod)	41
27032	(Hebden Beck @ Hebden)	43

Total 536 Weighted means

L-CV: 0.219

Heterogeneity measure	e de 🔳 🗖 🗙	🗐 Goodness-of-fit details		
Number of simulations 500	Edit No. Simulations	Number of simulations 500 Edit No. Simulations		
Observed average Simulated mean of average Simulated S.D. of average Standardised test value H2	0.1115 0.0937 0.0178 1.0049	Fitting Z value Gen. Logistic -2.4964 Gen. Extreme Value -3.8728		
The pooling group is possibly heterogeneous and a review group is optional.	of the pooling	Pearson Type III -4.5018 Gen. Pareto -7.2650		
Standard deviation of L-CV		Lowest absolute Z-value indicates best fit		
Observed	0.0571	* Distribution gives an acceptable fit (absolute Z value < 1.645)		
Simulated mean Simulated S.D. Standardised test value H1	0.0333 0.0074 3.2222	Save Cancel		
Heterogeneous	Cancel			

<u>All 05</u>

Station		Years of data	
27010	(Hodge Beck @ Bransdale Weir)		41
27032	(Hebden Beck @ Hebden)		43
25019	(Leven @ Easby)		31
203046	(Rathmore Burn @ Rathmore Bridge)		27
48009	(st Neot @ Craigshill Wood)		12
48004	(Warleggan @ Trengoffe)		40
203049	(Clady @ Clady Bridge)		27
48803	(Carnon @ Bissoe)		15
25012	(Harwood Beck @ Harwood)		40
24006	(Rookhope Burn @ Eastgate)		20
25011	(Langdon Beck @ Langdon)		23
51003	(Washford @ Beggearn Huish)		42
28041	(Hamps @ Waterhouses)		24
72007	(Brock @ U/s a6)		31
72014	(Conder @ Galgate)		42
47009	(Tiddy @ Tideford)		40

Total 498 Weighted means

L-CV: 0.213

🗾 Heterogeneity measure de 🔳 🔲 🗙	🖬 Goodness-of-fit details
Number of simulations 500 Edit No. Simulations	Number of simulations 500 Edit No. Simulations
Observed average 0.1109 Simulated mean of average 0.0880 Simulated S.D. of average 0.0152 Standardised test value H2 1.5056	Fitting Z value Gen. Logistic 0.0740 * Gen. Extreme Value -1.6377 *
The pooling group is possibly heterogeneous and a review of the pooling group is optional.	Pearson Type III -2.0687 Gen. Pareto -5.5758 Lowest absolute Z-value indicates best fit
Observed 0.0499	* Distribution gives an acceptable fit (absolute Z value < 1.645)
Simulated mean 0.0302 Simulated S.D. 0.0062 Standardised test value H1 3.2119	Save Cancel
Heterogeneous Save Cancel	

Loch_006

St	ation	Years of data
28041	(Hamps @ Waterhouses)	24
48803	(Carnon @ Bissoe)	15
203049	(Clady @ Clady Bridge)	27
24006	(Rookhope Burn @ Eastgate)	20
49004	(Gannel @ Gwills)	38
51003	(Washford @ Beggearn Huish)	42
47009	(Tiddy @ Tideford)	40
41020	(Bevern Stream @ Clappers Bridge)	40
72007	(Brock @ U/s a6)	31
48010	(Seaton @ Trebrownbridge)	37
49002	(Hayle @ st Erth)	52
72014	(Conder @ Galgate)	42
44003	(Asker @ Bridport)	27
24007	(Browney @ Lanchester)	15
48004	(Warleggan @ Trengoffe)	40
76811	(Dacre Beck @ Dacre Bridge)	10

Total 500 Weighted means

L-CV: 0.216

🛃 Heterogeneity measure de 🔳 🔲 🗙	🖬 Goodness-of-fit details		
Number of simulations 500 Edit No. Simulations	Number of simulations 500 Edit No. Simulations		
Observed average 0.0809 Simulated mean of average 0.0759	Fitting Z value		
Simulated S.D. of average 0.0132	Gen. Logistic 1.7965		
Standardised test value H2 0.3771	Gen. Extreme Value -0.4238 ×		
The pooling group is acceptably homogeneous and a review of the pooling group is not required.	Pearson Type III -0.6735 × Gen. Pareto -5.2690		
Standard deviation of L-CV	Lowest absolute Z-value indicates best fit		
Observed 0.0304	* Distribution gives an acceptable fit (absolute Z value < 1.645)		
Simulated mean 0.0276			
Simulated S.D. 0.0048	Save Cancel		
Standardised test value H1 0.5909			
Acceptably homogeneous			
Save Cancel			

UNN_07 Station

Years of data

45817	Rhb Trib to Haddeo @ Upton (trib)	16
76011	Coal Burn @ Coalburn	32
45816	Haddeo @ Upton	16
27051	Crimple @ Burn Bridge	37
28033	Dove @ HOllinsclough	30
91802	Allt Leachdach @ Intake	34
54022	Severn @ Plynlimon Flume	38
25011	Langdon Beck @ Langdon	23
25003	Trout Beck @ Moor House	36
25019	Leven @ Easby	31
206006	Annalong@ Recorder 1895	48
27010	Hodge Beck @ Hebden	43
203046	Rathmore Burn @ Rathmore Bridges	27
56007	Senni @ Pont Hen Hafod	41
56007	Senni @ Pont Hen Hafod	41
49003	de Lank @ de Lank	43

Total 536

Weighted means

L-CV: 0.221

L-Skew: 0.260

Heterogeneity measure de		🗾 Goodness-of-fit de	tails	
Number of simulations 500	Edit No. Simulations	Number of simulations	500	Edit No. Simulations
-L-CV / L-skewness distance-		Fitting	Z value	
Observed average Simulated mean of average Simulated S.D. of average	0.1115 0.0961 0.0168	Gen. Logistic Gen. Extreme Value Pearson Type III Gen. Pareto	-2.2898 -3.5788 -4.1678 -6.7556	
Standardised test value H2	0.9183	Lowest absolute Z-valu	ue indicates best fi	it
The pooling group is accepta homogeneous and a review o group is not required.		* Distribution gives an a	acceptable fit (abso Cancel	
Standard deviation of L-CV				
Observed	0.0571			
Simulated mean	0.0349			
Simulated S.D.	0.0083			
Standardised test value H1	2.6776			
Heterogeneous				
Save	Cancel			

Lower Milehead Station

Years of data

76011 45817 45816 27051 28033 91802 25011 25003 25019 54022 206006 27010 203046 73006	Coalburn @ Coalburn Rhb Trib to Haddeo @ Upton (trib) Haddeo @ Upton Crimple @ Burn Bridge Dove @ Hollinsclough Allt Leachdach @ Intake Langdon Beck @ Langdon Trout Beck @ Moor House Leven @ Easby Severn @ Plynlimon Flume Annalong @ Recorder 1895 Hodge Beck @ Bransdale Weir Rathmore Burn @ Rathmore Bridge Cunsey Beck @ Eel House Bridge	32 16 16 37 30 34 23 36 31 38 48 41 27 37
	5	
49003	de Lank @ de Lank	43
56007	Senni @ Pont Hen Hafod	41

Total 530 Weighted Means

L-CV : 0.218

L-Skew : 0.252

Goodness-of-fit details Imber of simulations 500 Edit No. Simulations Fitting Z value Gen. Logistic -2.1017 Gen. Extreme Value -3.5685 Pearson Type III -4.1695 Gen. Pareto -7.1294 Distribution gives an acceptable fit (absolute Z value
Gen. Logistic -2.1017 Gen. Extreme Value -3.5685 Pearson Type III -4.1695 Gen. Pareto -7.1294 owest absolute Z-value indicates best fit
Save Cancel

- • ×

Loch Alvie 1

Station

of data

Total 548 Weight means

L-CV: 0.222

L=Skew: 0.264

_				
🗾 Heterogeneity measure de		×	Goodness-of-fit details	
Number of simulations 500	Edit No. Simulations		Number of simulations 500	Edit No. Simulations
-L-CV / L-skewness distance-			Fitting Z value	
Observed average	0.1116		Gen. Logistic -2.3449 Gen. Extreme Value -3.6861	•
Simulated mean of average	0.0950		Pearson Type III -4.319	
Simulated S.D. of average	0.0169		Gen. Pareto -7.0072	2
Standardised test value H2	0.9784		Lowest absolute Z-value indicates	best fit
The pooling group is accepta homogeneous and a review group is not required.			* Distribution gives an acceptable f	it (absolute Z value < 1.645) Cancel
Standard deviation of L-CV		5 4		
Observed	0.0567			
Simulated mean	0.0342			
Simulated S.D.	0.0076			
Standardised test value H1	2.9695			
Heterogeneous				
Save	Cancel			

Loch Alvie 2

Station

45817	Rhb Trib to Haddeo @ Upton trib	16
76011	Coal Burn @ Coalburn	32
45816	Haddeo @ Upton	16
27051	Crimple @ Burn Bridge	37
28033	Dove @ Hollinsclough	30
91802	Allt Leachdach @ Intake	34
54022	Severn @ Plynlimon Flume	38
25011	Langdon Beck @ Langdon	23
25003	Trout Beck @ Moor House	36
25019	Leven @ Easby	31
206006	Annalong @ Recorder 1895	48
27010	Hodge Beck @ Bransdale Weir	41
203046	Rathmore Burn @ Rathmore Bridge	27
56007	Senni @ Pont Hen Hafod	41
27032	Hebden Beck @ Hebden	43
49003	de Lank @ de Lank	43

Total 536 Weighted means

L-CV: 0.221

L-SKEW: 0.260

of data

🚽 Heterogeneity measure de 🗖 🔲 🔀	🗐 Goodness-of-fit details 💿 💷 💽
Number of simulations 500 Edit No. Simulations	Number of simulations 500 Edit No. Simulations
Observed average 0.1115 Simulated mean of average 0.0939 Simulated S.D. of average 0.0181 Standardised test value H2 0.9715	Fitting Z value Gen. Logistic -2.2072 Gen. Extreme Value -3.4544
The pooling group is acceptably homogeneous and a review of the pooling group is not required.	Pearson Type III -4.0243 Gen. Pareto -6.5280
Standard deviation of L-CV	Lowest absolute Z-value indicates best fit
Observed 0.0571	* Distribution gives an acceptable fit (absolute Z value < 1.645)
Simulated mean 0.0337 Simulated S.D. 0.0080 Standardised test value H1 2.9495	Save Cancel
Heterogeneous Save Cancel	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>

Loch Alvie 3

Station		Years of data
76011	Coal Burn @ Coalburn	32
45817	Rhb Trib to Haddeo @ Upton trib	16
45816	Haddeo @ Upton	16
27051	Crimple @ Burn Bridge	37
28033	Dove @ Hollinsclough	30
91802	Allt Leachdach @ Intake	34
54022	Severn @ Plynlimon Flume	38
25011	Langdon Beck @ Langdon	23
25003	Trout Beck @ Moor House	36
25019	Leven @ Easby	31
206006	Annalong @ Recorder 1895	48
27010	Hodge Beck @ Bransdale Weir	41
56007	Senni @ Pont Hen Hafod	41
203046	Rathmore Burn @ Rathmore Bridge	27
27032	Hebden Beck @ Hebden	43
49003	de Lank @ de Lank	43

Total 536 Weighted means

L-CV: 0.220

L-SKEW: 0.260

🗾 Heterogeneity measure de 👝 🗉 💌	🗐 Goodness-of-fit details 🛛 🗆 🖾		
Number of simulations 500 Edit No. Simulations	Number of simulations 500 Edit No. Simulations		
Observed average 0.1115 Simulated mean of average 0.0930	Fitting Z value		
Simulated S.D. of average 0.0174	Gen. Logistic -2.5244		
Standardised test value H2 1.0626 The pooling group is possibly heterogeneous and a review of the pooling group is optional.	Gen. Extreme Value -3.9101 Pearson Type III -4.5432 Gen. Pareto -7.3249		
Standard deviation of L-CV	Lowest absolute Z-value indicates best fit		
Observed 0.0571	* Distribution gives an acceptable fit (absolute Z value < 1.645)		
Simulated mean 0.0332 Simulated S.D. 0.0076 Standardised test value H1 3.1478	Save Cancel		
Heterogeneous Save Cancel			

7.2 Additional supporting information

See hydrological technical note for catchment boundaries