

		$\begin{aligned} & \text { D } \\ & \text { DU } \\ & \overrightarrow{3} \\ & \stackrel{0}{7} \end{aligned}$					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$								$\begin{aligned} & \text { n } \\ & \text { O} \end{aligned}$		
							$\begin{aligned} & \text { ه} \\ & \stackrel{0}{0} \\ & \stackrel{\oplus}{0} \\ & \stackrel{\rightharpoonup}{\tilde{n}} \end{aligned}$							$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{3}{3} \\ & 0 \\ & \frac{0}{n} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O-1 } \\ & \stackrel{\text { I }}{ } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { 2 } \\ & \text { Й } \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
0	50	。	－	－ 2	－ 1	3	0	1	0	－	－	－	0	1	${ }^{-3}$	${ }^{-3}$	Strucure forcten to ose．
50	100	0	－	－2	${ }_{-}$	3	－	－	－	－	－	－	。	．	-2	－	
100	150	。	－	－2	－	${ }^{-3}$	－	－	－	－	－	－	。	1	2	2	
150	200	－	－	－2	－	3	－	－	－	－	－	－	－	－	2	2	
200	250	\bigcirc	\bigcirc	2	－	${ }^{3}$	－	－	－	－	－	－	－	－	2	－	
250	300	－	－	－	${ }_{-}$	${ }^{-3}$	－	－	－	－	\bigcirc	－	。	－ 1	2	－	
300	350	－	－	－	${ }^{-1}$	3	－	－	－	－	－	－	－	．	2	－2	
350	400	－	－	－ 2	－ 1	${ }^{3}$	－	－	－	－	。	0	。	1	2	－2	
400	450	0	1	－ 2	${ }_{-}$	3	－	－	－	－	－	。	。	1	2	－	
450	500	－	.$^{-1}$	2	${ }_{-}$	${ }^{-3}$	－	－	－	－	－	－	。	－	－2	2	
500	550	－	－	－ 2	－	3	－	。	－	－	－	－	。	－	2	－2	
550	600	－	－	－ 2	－	3	－	－	－	－	－	。	。	－	2	2	
600	650	－	－	2	－	${ }^{-3}$	－	－	－	－	。	－	。	．	2	2	
650	700	。	1	2	－	3	${ }_{-1}$	。	。	。	－	。	。	1	3	${ }_{3}$	Minor embankments on potentially compressible ground． Combination of level difference，hilliness，bendiness and earthworks／m．Some local disruption due to construction．
700	750	0	1	2	－ 1	.3	－ 1	－	0	\bigcirc	－	0	。	1	3	3	
750	800	－	${ }^{1}$	－2	－	3	－	－	－	－	－	。	。	1	2	－	
800	850	。	－	－	－	${ }^{3}$	－	－	。	－	－	－	。	－	2	2	
850	900	－	－	－ 2	－	${ }^{-3}$	－	。	－	。	。	。	0	1	2	－	
900	950	－	0	－2	－	${ }^{3}$	－	－	－	－	－	－	。	1	2	2	
950	1000	－	－	－	1	${ }^{3}$	0	－	－	－	－	－	－	－	2	－2	
1000	1050	－	－	－	－	3	－	－	－	。	。	。	。	－	－	－ 2	
1050	1100	。	。	-2	－ 1	－3	。	。	0	。	。	\bigcirc	－2	－	－ 3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
1100	1150	。	－	－2	－	3	0	－	－	。	－	。	2	－ 1	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
1150	1200	。	${ }_{-}$	－ 2	－ 1	${ }^{3}$	0	－	－	。	－	－	2	－	3	3	
1200	1250	。	${ }_{1}$	－2	－ 1	3	－	。	－	。	－	。	2	${ }_{-1}$	${ }^{-3}$	3	Combination of level difference，hilliness，bendiness and earthworks $/ \mathrm{m}$ ．Difficult construction access and some loca disruption due to construction．
1250	1300	。	1	－	－	3	0	－	0	0	－	－	2	1	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
1300	1350	。	－ 1	－ 2	－ 1	3	0	－	0	－	－	－	2	－	${ }^{3}$	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
1350	1400	。	${ }_{-}$	－	－	3	。	－	0	0	－	。	－	1	3	3	Combination of level difference，hilliness，bendiness and earthworks $/ \mathrm{m}$ ．Difficult construction access and some local disruption due to construction．
1400	1450	0	1	2	－ 1	3	0	\bigcirc	0	－	0	0	2	1	3	3	Combination of level difference，hilliness，bendiness and earthworks $/ \mathrm{m}$ ．Difficult construction access and some local disruption due to construction．
1450	1500	0	1	2	${ }^{-1}$	3	0	\bigcirc	0	－	－	－	2	1	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some loca disruption due to construction．
1500	1550	。	－ 1	－	－1	3	。	－	0	0	0	－	2	1	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
1550	1600	－	1	2	－	3	0	－	0	－	－	－	－	${ }_{-}$	3	－3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
1600	1650	。	。	－	1	3	0	\bigcirc	0	0	－	0	2	1	3	－3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
1650	1700	。	\pm	－2	${ }_{-1}$	${ }_{3}$	。	。	。	。	。	。	2	－	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
1700	1750																
1750	1800												2		－	．	（ex
		0	－2	－	－	3	－	－	－	－	－	－	2	1	－ 5	－ 5	
1800	1850	，	－														Cuttings up to 17.6 m （but greater than 10 m ）high in rock． Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local
1850	1900													1		－	
		0	－2	－	－	－	－	－	－	－	－	－	－	1	－	－	
1900	1950	0	－	2	－	．	－	。	。	。	。	。	2	1		．	Cuttings up to 17.6 m （but greater than 10 m ）high in rock． Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local
1950	2000										0	0	2	1	－	．	
		－	2	2	－	3	${ }^{-1}$	－	－	－	－	－	2	${ }^{1}$	－5	－	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and some local disruption due to construction．
2000	2050	－	$=$	－	－	${ }^{3}$	－	－	－	－	－	。	2	－	4	4	Comen
2050	2100	。	2	2	－	${ }^{3}$	－	。	－	。	－	。	2	1	${ }^{3}$		
2100	2150				1												
		－	－	-2	－	3	－	－	－	－	－	－	2	1	${ }^{-3}$	3	
2150	2200	0	。	－2	－ 1	3	。	。	－	。	－	。	2	－	3	3	Combination of hilliness，bendiness and earthworks／m． Difficult construction access and some local disruption due to construction．
2200	2250	0	－	－	－	3	－	－	－	－	－	－	2	1	3	－ 3	Comen
2250	2300	－	。	$-$	－	． 3	－	。	－	－	－	。	2	－	${ }^{-3}$	－ 3	Combination of hilliness，bendiness and earthworks／m． Difficult construction access and some local disruption due to construction．
2300	2350	－	－	－2	－	3	－	。	－	－	－	－	2	1	${ }^{-3}$	－ 3	Combination of hilliness，bendiness and earthworks／m． Difficult construction access and some local disruption due to construction．
2350	2400	0	－	－2	－	${ }^{3}$	－	－	－	－	－	－	：	－	${ }^{3}$	${ }^{3}$	Combination of hilliness，bendiness and earthworks／m． Difficult construction access and some local disruption due to construction．
2400	2450																
		\bigcirc	1	2	1	${ }^{3}$	0	－	0	－	－	－	2	1	${ }^{-3}$	－3	
2450	2500	0	1	－	1	${ }^{3}$	0	－	－	－	－	。	2	1	3	－3	Combination of hiliness，bendiness and earthworks／m． Difficult construction access and some local disruption due to construction．
2500	2550																
2550	2600	0	-1	－ 2	－	${ }^{-3}$	－	－	－	－	－	－	2	－	4	4	
	2600																

Rules
Total Score
Structures Score＋Flooding Score（Average of L，M and N ）
＋Utilities score＋Constructability Score（Minimum value of $\mathrm{P} \& \mathrm{Q}$
Then if total＜or equal to－ 9 then should be coloured red
because this represents possibility of 3 reds or 4 ambers
If total is between -6 and -8 should be coloured amber since this could represent 2 reds or $3 / 4$ ambers．
If total is between -3 and -5 sho

2600	2650		2	－2			－	－	－	－	－	－			4		
2650	2700	。	－1	－	－	－	－	。	－	－	－	－	2	1	3		
2700	2750	。	－	2	－	${ }^{3}$	－	－	－	－	－	－	2	．	3		
2750	2800	。	－	2	－	${ }^{3}$	。	－	－	。	。	。	2	1	． 3		
2800	2850	．	。	2	．	3	。	。	．	。	。	。	2		． 3		
2850	2900	。	。	－2	．	． 3	。	．	。	．	。	．	2	1	．		
2900	2950	。	。	2			．	。	。	。	。	。			3		
2950	3000	。	．	2	．	3	。	。	。	。	。	。	2	－	．	．	
3000	3050	．	．	2	．	．	．	。	。	。	。	．	2	＋	3.	3	
3050	3100	。	－	2	．	${ }^{3}$	．	。	。	．	。	。	2	－	． 3		
3100	${ }^{3150}$	。	－	2	－		。	2	。	。	。	。	2		．		
3350	${ }^{3200}$	－	1	2	1	3	－	2	－	－	－	－	2	1	s	－	
3200	${ }^{3250}$	。	．	2	．	3	。	2	。	。	。	。	2	．	．	－	
3250	3300	。	－	－	．	3	．	。	。	。	。	。	2		3.	3	
3300	3350	．	．	2	．	．	。	－	。	。	．	。	2	－	3.	3	
3350	3400	。	1	－	－	3	。	。	。	。	。	。	2		3	3	
3400	${ }^{3450}$	。	。	2	．	3	。	。	。	．	。	。	2	－	． 3	3	
3450	${ }^{3500}$	。	。	2	－	3	。	。	。	。	。	。	2	．	3	3	
3500	3550	。	1	－	－	3	。	。	。	。	。	。	2	－	3	${ }_{3}$	
3550	33600	。	．	2	－	3	－	。	。	。	。	。	2		．	．	
3600	3650	－	2	2	－	－	－	－	－	－	－	－	2	1	．	．	
3650	${ }^{3700}$	。	2	2	．	3	．	－	－	。	．	．	2		．	．	
3700	3750	。	2	－	－	${ }^{3}$	2	。	。	。	。	。	2	1	－	－	cen
3750	3800	－	3	2	－	3	2	。	。	。	。	。	2	．	－	－	
3800	3850	\bigcirc	3	2	－	3	2	－	－	－	。	。	2	－	6	．	（e）
3850	3900	。	3	－	－	3	2	。	－	。	－	－	2	－	．		
3900	3950	－	3	－2	－	3	－2	－	－	－	－	－	2	－	6	－	Construction． Cuttings up to 30.0 m high in rock．Combination of level difference，hilliness，bendiness and earthworks $/ \mathrm{m}$ ．Difficult construction access and some local disruption due to construction．
3950	4000	．	3	2	－	3	－	－	－	。	。	－	．	．	－		
4000	4050	－	3	－	－	3	－	－	－	－	。	－	2	．	－	．	Cuttings up to 30.0 m high in rock．Combination of level difference，hilliness，bendiness and earthworks $/ \mathrm{m}$ ．Difficult construction access and some local disruption due to construction．
4050	4100	－	3	2	－	3	2	－	－	－	－	－	2	．	－	－	
4100	${ }^{4150}$	．	2	2	－	3	－	－	－	－	－	。	2	．	5		
4150	${ }^{4200}$	－	2	－	－1	3	－	\cdots	－	－	－	．	2	．	s	．	
4200	${ }_{4300}^{4250}$	．	2	2	－	3	．	。	。	。	。	。	2	－	s	．	
4250	${ }^{4300}$			－		3	\therefore	－	－	－	－	－	2	．	5		
4300	${ }^{4350}$	．	2	－	－	3	－	－	－	－	－	－	2	．	．	．	
4350	${ }_{4400}$	。	2	2	1	3	1	。	－	－	。	。	2	．	－	．	
4400	${ }_{4500}^{4450}$	。	2	-2	-1			0	0	。	。	。	2	－	s	．	
4450	4500																

8150	8200	－			，	，	，	－	－	－	－		，				cain
8200	8250																athel
		－	1	2	－	3	3	－	－	－	－	－	3	。	\rightarrow	7	
8250	8300	。															
8300	8350												3	。	\rightarrow		atain
		－	1	2	－	3	3	\bigcirc	\bigcirc	－	－	－	2	1	－	－	
8350	8400	。	1	2	－	3	－	－	－	－	－	－	2	1	3	3	
8400	8450	。	－	2	－	${ }^{3}$	。	。	－	。	－	。	2	1	${ }^{3}$	3	
8450	8500	。	－	2	－	3	－	。	－	－	－	。	2	1	3		
8500	8550	－	1	2	－	3	－	－	－	－	－	\bigcirc	2	1	4	4	
8550	8600	。	1	2	${ }^{-}$	${ }^{3}$	－	。	。	－	。	－	2	1	3		
8600	8650	。	－	2	－	3	－	－	－	－	－	－	2	1	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access．
8650	8700	－	\bigcirc	2	－	${ }^{3}$	－	－	－	－	－	－	2	1	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access．
8700	8750	－	－	2	1	3	－	－	－	－	－	－	2	1	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access． Combination of level difference，hilliness，bendiness and
8750	8800	。	1	2	－	3	。	－	－	－	－	。	2	1	3		
8800	8850	。	．	： 2	－	3	－	。	－	－	－	。	2	1	3		
8850	8900	。	．	：	－	${ }^{3}$	－	－	。	－	－	。	2	1	3		
8900	8950	。	－	2	－	3	－	－	－	－	。	－	2	1	3		
8950	9000																400m．Overall impact assessed ds major due to tstruture and earthworks／m．Difficult construction access．
9000	9050	。		2	－	${ }^{3}$	。	3	。	。	。	。	2		．		Structure for side road crossing and the Mill Burn－length 400m．Overall impact assessed as major due to structure length．Combination of level difference，hilliness bendin and earthworks／m．Difficicult construction access．
9050	9100	。	2	2	－	3	－	3	。	。	。	。	2	－	－	．	Structure for side road crossing and the Mill Bum－length and earthworks／m．Difficult construction access．
9100	${ }_{9200}^{9150}$	。				．	．	．	。	。	。	。	2	－	．	．	Structure for side road crossing and the Mill Burn－length 400 m ．Overall impact assessed as major due to structure and earthworks $/ \mathrm{m}$ ．Difficult construction access．
9150	9200	。		2		3	1	3	\bigcirc	－	。	。	2	1	．		Structure fors sie rad crossing and the mil uum－lengin and earthworks／m．Difficult construction access．
9200	9250	。	2	2	－	3	－	． 3	。	．	．	。	2	1	．	，	Structure for side road crosing and the Mill Burn－length 40om．Overall inpact assessed as majord tuve tostuture length．Combination of fevel difference，hilliness，bendine and earthworss／m．．ifficult construction access．
9250	9300							3	。	。	。	。	2		．	．	structur for stid rasad cossing and the enimum．－engen length．Combination of level difference，hilliness，bendiness and earthworks／m．Difficilt construction access．
93300	${ }^{9350}$	。	2	2	1	3	。	3	．	。	。	。	3	。	－	．	
9350	9400	。		2	－	．	。	． 3	。	。	。	。	3	。	\rightarrow	．	Structure for side road crossing and the Mill Burn－length 400 m ．Overall impact assessed as major due to structure length．Combination of level difference，hilliness，bendines and earthworks／m．Difficult construction access．
9400	9450	。	1	2	－	${ }^{3}$	－	－	－	－	－	。	3	。	4	－	Combeion
9450	9500	－	。	2	－	3	－	。	－	－	。	。	3	。	4	．	
9500	9550	。	1	2	－	3	－	－	－	－	－	－	3	。	4	4	
9550	9600	。	－	2	．	3	－	－	－	。	。	－	3	。	4	4	
9600	9650	。	\pm	2	－	3	－	－	－	－	－	－	3	。	4	4	
9650	9700	。	。	2	1	${ }^{3}$	－	－	－	。	－	。	3	。	4	4	
9700	9750	－	－	2	．	3	－	－	－	－	－	－	3	。	4	－	
9750	9800	－	－	2	．	${ }^{3}$	－	。	－	－	－	。	3	。	4	－	
9800	9850	－	－	2	4	3	－	－	－	－	－	。	3	。	4	4	
9850	9900	－	4	2	－	${ }^{3}$	－	－	－	－	－	，	3	。	4	4	
9900	9950	－	1	2	．	3	－	－	\bigcirc	\bigcirc	－	－	3	。	4	4	
9950	10000	－	1	2	－	3	－	－	－	－	－	－	3	。	5		
10000	10050	。	2	2	－	3	－	－	－	。	－	－	3	。	－	－	Cuttings up to 18 m high in rock．Combination of level difficult construction access．
10050	10100			2	＋	，	＋	。	。	。	。						atemememe
10100	10150	－				3	－	－	－	－	－	－	3	。	－	－	atiole
		－	2	2	1	3	1	－	－	－	－	－	3	－	－	－	
10150	10200	－	2	2	．	3	－	。	。	。	。	。	3	－	－	－	Cuttings up to 18 m high ifference，hilliness，bendiness and earthworks／m．Very difference，hilliness，bendine difficult construction access．
10200	10250	。	2	2	．	3	2	－	\bigcirc	－	－	－	3	。	${ }_{7}$	，	Combination of leve difference，hilliness，bendiness and earthworks／m．Very difficult construction access．
10250	10300		${ }^{3}$	2	－	3	2	－	－	。	－	。	3	。	\rightarrow	\rightarrow	ate
10300	10350	。		－	－	3	－	－	－	－	－	－	3	。	－	－	
10350	10400										－	－	3	。	．	－	
10400	10450	。	2	2	1	3	1					－	3		－		
10450	10500	－	$=$	$=$	－	${ }^{3}$	1	－	－	－	－	－	3	。	．	－	
		－	2	2	1	3	1	－	－	－	－	－	3	。	－	－	
10500	10550	。	2	2	．	${ }^{3}$	．	。	。	。	－	。	3	。	－	－	
10550	10600	。	2	－	－ 1	3	－	－	－	－	－	－	3	。	－		
10600	10650	－	2	2	－-1	3	\cdots	－	\bigcirc	－	\bigcirc	－	${ }^{3}$	－	－	－	
10650	10700	－	1	2	1	3	－	。	。	－	－	－	．	。	4		
10700	10750	\bigcirc	－	2	－	3	\bigcirc	－	－	－	－	－	3	。	4	4	
10750	10800	\bigcirc	$\stackrel{-1}{-1}$	－	－	3	\bigcirc	－	\bigcirc	－	\bigcirc	－	3	。	4	4	
10800	10850	。	。	－	－	${ }^{3}$	－	－	－	－	－	－	2	2	${ }^{3}$	3	
10850	10900		－						－	－	－	－	2	2	3	3	Tomel
10900		－	－	2	－	3	－	－	－	－	－	－	2	2	3	3	
	10950	－	1	2	1	3	－	－	\bigcirc	－	－	－	2	2	3	3	
10950	11000	。	．	2	－	3	。	。	。	。	\bigcirc	。	2	2	3	${ }_{3}$	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and disruption to local traffic due to construction．
11000	11050	。	－	2	－ 1	3	\bigcirc	－	－	－	－	。	2	2	${ }^{-}$	－	Comene
11050	11100	，			，	，	。	。	－	。	－	－	2	2	，	，	
11100	11150					3			\bigcirc	－	－	－	－	2	3	－3	
		－	－	2	－	3	－	－	－	－	－	－	2	2	4	4	Comele
11150	11200																Semememe
11200	11250	\bigcirc	2	2			1		\bigcirc	－	－	－	2	2	－	S	
	11250	－		－	1	3	－		－	－	\bigcirc	－	2	－	．	S	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and disruption to local traffic due to construction．
11250	11300																
		－	2	2	${ }_{-}$	3	－	－	－	－	－	－	2	－	s	．	
11300	11350																Embankments up to 13 m high on non－identified ground． Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and disruption to local traffic due to construction．

11350	11400	－															Embankments up to 13 m high on non－identified ground． Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and disruption
11400	11450																
		－	2	－	${ }^{-1}$	3	0	。	－	－	－	－	2	2	4		）
11450		－	\pm	2	－	3	－	－	－	－	－	－	2	2	3	3	
11500	11550	。	1	，	＋	，	。	。	。	。	－			，	，		mamborlee
11550	11600		－	－	－	3	－	－	。	－	－	－	－	2	3	3	Mat
		－	．	2	－	3	\bigcirc	－	－	－	\bigcirc	－	2	2	3	3	
11600	11650	。	1	－	－	3	－	。	。	－	－	。		2	${ }^{3}$		Comen
11650	11700																
		－	1	2	－	3	－	－	－	－	－	－	2	2	3		
11700	11750	。	－	2	1	3	－	。	。	。	。	。	2	2	${ }^{3}$	3	Cemenemene
11750	11800	。	。	，	，	，	－	。	。	。							
11800	11850		－	： 2	－	3	－	－	\bigcirc	－	－	－	2	2	3		
		－	。	2	1	3	－	－	－	－	－	－	2	2	3	3	
11850	11900	。	－	2	－	3	。	。	。	－	。	。		2	3		
11900	11950																
		－	－	2	1	3	－	－	－	－	－	－	2	2	${ }^{3}$	3	
11950	12000	－	。	\sim	1	3	－	－	－	－	－	－	2	2	3	3	隹
12000	12050	。	。	2	－	3	－	－	－	。	。	。	2	2	．		
12050	12100	－	－			，	，	，	－	，	－	－		，	，		
12100	12150						\bigcirc	\bigcirc	\bigcirc	－							
12150	12200	－	－	－	－	3	。	－	－	－	－	－	12	2	3	${ }^{3}$	为
		－	。	2	\pm	3	－	－	－	－	－	－	2	2	3	3	
12200	12250	。	。	2	－	3	－	。	。	－	。	－		2	3	3	
12250	12300					，		。	，	，					，		
12300	12350		－	－	－	3	．	．	．	－	－	－		2	4		（oumen
		－	－	2	－	3	－	－	－	－	－	－	2	2	3	3	
12350	12400	。	。	2	－	3	－	。	。	。	－	－		2	3	${ }^{3}$	
12400	12450	。				，	，	。	。	，	。	。		，	，		Comen
12450	12500						－	－	．	－	－	．		2			
		－	1	2	1	3	－	－	－	－	－	－		2	3	3	边
12500	12550	－	\pm	2	1	3	－	－	－	－	－	－	2	2	3	3	Combination of level difference，hilliness，bendiness and earthworks／m．Difficult construction access and disruption to local traffic due to construction．
12550	12600	。	1			3	。	。	。	。	。	。		2	\cdots		
12600	12650	。			，	，	，	。	。	，	－	，			，		
12650	12700				－	S	．	－	。	－							
12700		－	－	2	－	3	－	－	－	－	－	－		2	3	3	）
		－	${ }^{1}$	2	－	3	－	－	－	－	－	－	2	2	3	3	
12750	12800	。	1	2	1	3	－	。	。	。	。	。		2	${ }_{3}$	3	Comene
12800	12850	，					，	－	－	－	，	－		2			
12850	12900						－	－	－		－	－		2	3		
		－	－	2	－	3	－	－	－	－	－	－		2	3	3	
12900		－	\pm	2	－	－ 3	－	－	－	－	－	－	2	2	3	3	隹
12950	13000				－		－			－							
		－	1	2	\pm	3	－	－	－	－	－	－		2	3	3	退
13000	13050	0	1	2	1	3	\bigcirc	－	－	－	－	－		2	3	3	
13050	13100	。	4	2	－	${ }^{3}$	。	。	。	。	。	。	：	2	3	${ }_{3}$	cemen
13100	13150																
13150	13200	。	－	2	－	${ }^{3}$	－	－	－	－	－	－		2	3	${ }^{3}$	）
		－	1	－	－	3	\bigcirc	－	－	－	－	－	2	2	3	3	
13200	13250								。	。	。	。		2	3		
13250	13300							－	－	－	－	－		2	${ }^{-3}$		
		－	－	2	-1	3	－	－	－	－	－	－	：	2	3	3	
13300	13350	。	－	2	1	3	－	－	－	－	－	－	2	2	3	3	
13350	13400							。	。	。	。	。		2	3		
13400	13450																
		－	\pm	2	－	3	－	－	－	－	－	－		2	3	3	
	13500	－	1			3	－	－	－	－	－	－		2	3		隹
13500	13550																
13550	13600		－	－	－	3	－	－	－	－	－	－		2	${ }^{-3}$	3	何
		－	。	2	1	3	－	－	－	－	－	－	2	2	3	3	
13600	13650													，	，		
13650	13700	\because	$\stackrel{-1}{ }$	2	－	3	\bigcirc	$\stackrel{-}{1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	2	2	4	4	
13700	13750																
13750	13800	－	1	2	－	3	－	－	－	－	－	－	2	2	3	3	
		－	2	2	－	3	－	\bigcirc	－	－	－	－	2	2	4	，	
13800	13850	。	1					。	。	。							
13850	13900		4		1	3	\bigcirc	－	－	－	－	。		2	3		（oumele
		－	1	2	－	3	－	－	－	－	－	－		2	3		
13900	13950	－	－	2	－	3	－	。	。	。	。	。		2	${ }^{3}$		Comen
13950	14000	－									－			2			
14000	14050	\bigcirc	1	2	－	3	－	－	－	－	－	－	2	2	3	3	
		－	－	2	－	3	－	－	－	－	－	－	2	2	3	3	
14050	14100	－	。	2	1	3	－	。	。	－	－	。		2	${ }^{3}$		
14100	14150													2	3		
14150	14200	。	－	2	－	3	－	－	－	－	－	－	2	2	3		
		－	－	2	－	3	－	－	－	－	－	－	2	2	3		
14200	14250																Comen
14250	14300	－	－			3								2	3		
		－	－	2	－	3	－	－	－	－	－	－		2	3		
14300	14350	。	－	2	－	3	－	－	－	－	－	－	2	2	3		隹
14350	14400	。	。	，	，	，	。	。	－	。	。	。	，	，	，	，	Comen
14400	14450		－	－	－	，				－	－			2			为
		－	－	2	－	3	－	－	－	－	－	－	2	2	3		
14450	14500	－	－	2	－	3	－	－	－	－	－	－	2	2	3		
14500	14550	。	。	2	1	3	。	。	。	－	－	。	2	2	3		Comen
14550	14600												2		3		

Rules Total Scor

Structures Score＋Flooding Score（Average of L, M and N
＋Utilities score＋Constructability Score（Minimum value of $\mathrm{P} \& \mathrm{Q}$
Then if total＜or equal to -9 then should be coloured red
because this represents possibility of 3 reds or 4 ambers If total is between -6 and -8 should be
could represent 2 reds or $3 / 4$ ambers．
If total is between -3 and -5 sho

$\begin{aligned} & \text { ? } \\ & \stackrel{\rightharpoonup}{\overrightarrow{1}} \\ & \text { ᄅ. } \\ & \text { In } \end{aligned}$							$\begin{aligned} & 00 \\ & \stackrel{0}{0} \\ & \stackrel{\Gamma}{0} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	\qquad							$\begin{aligned} & \pi \\ & \frac{\pi}{\sigma} \end{aligned}$		
				$\begin{aligned} & \text { 䍛 } \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{array}{\|l\|l} \text { 포 } \\ \text { 咅 } \\ \text { din } \end{array}$		$\begin{aligned} & 00 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	\qquad							$\begin{aligned} & \text { 물 } \\ & \underline{\underline{1}} \end{aligned}$		
0	50	－	－ 1	－ 1	－	3	0	－	－	－	－	－	2	1	－ 3	3	combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access and some local disruption due to construction
50	100	－	－	－	－	${ }^{3}$	－	－	－	－	－	－	2	．	3	3	
100	150	－	－	－	${ }^{-1}$	3	－	\bigcirc	－	0	－	－	2	1	${ }^{-3}$	${ }^{-3}$	
150	200	－	－	${ }^{-1}$	${ }_{-1}$	${ }^{-3}$	－	－	－	0	－	－	2	－	${ }^{-3}$	－ 3	
200	250	－	${ }_{-1}$	－	${ }_{-1}$	${ }^{-3}$	－	。	－	－	。	－	2	－	－	－	
250	300	－	－ 1	－	－	${ }^{-3}$	－	－	－	－	－	－	2	1	${ }^{-3}$	－ 3	
300	350	－	－	－	－	${ }^{3}$	－	－	－	－	－	－	2	－	${ }^{-3}$	${ }^{3}$	
350	400	。	${ }^{-}$	－	－	3	－	－	。	－	。	－	2	\pm	3	3	
400	450	0	1	-1	－ 1	3	\bigcirc	－ 1	－	0	－	0	2	－1	4	4	New structure for Burn of Drumblade－length 100 m combination of level difference，hilliness，bendiness and earthworks／m Difficult construction accesss and some local disruption due to construction
450	500	－	${ }^{-1}$	－	－	${ }^{-3}$	－	－	－	－	－	－	2	1	4	4	
500	550	－	－	－	－	3	－	－	－	－	－	－	－	1	4	${ }_{4}$	
550	600	。	1	1	1	3	0	\bigcirc	0	0	\bigcirc	0	2	1	${ }^{3}$	． 3	combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access and some local disruption due to construction
600	650	－	－	－	－	3	－	－	－	－	－	。	2	－	${ }^{-3}$	${ }^{3}$	
650	700	－	－	${ }_{-}$	－	${ }^{-3}$	－	－	－	－	。	。	2	1	${ }^{-3}$	3	
700	750	－	1	1	－	${ }^{-3}$	－	0	－	0	0	－	2	－	${ }^{-3}$	${ }^{-3}$	
750	800	－	1	${ }_{-}$	${ }_{-1}$	${ }^{-3}$	－	。	－	－	－	－	2	－1	${ }^{-3}$	${ }^{3}$	
800	850	－	1	． 1	－	3	－	－	－	－	－	－	2	．	${ }^{-3}$	3	
850	900	0	2	1	－	3	1	\bigcirc	0	0	－	。	2	－	4	4	
900	950	－	2	${ }^{-1}$	${ }^{-1}$	3	－ 1	－	－	－	－	。	2	－	4	4	
950	1000	。	－	${ }^{-1}$	－ 1	－	2	－	－	－	．	－	－2	－	－	－	
1000	1050	－	${ }^{3}$	${ }^{-1}$	${ }^{-1}$	3	2	－	－	－	－	－	2	－	－	－	
1050	1100	－	${ }^{3}$	－	－	3	2	－	－	－	－	－	2	－	－	－	
1100	1150	0	3	${ }_{-}$	${ }_{-1}$	${ }^{-3}$	－ 2	－	－	－	。	－	2	1	－	6	
1150	1200	－	3	1	－	3	2	－	－	－	。	。	2	．	\checkmark	－	
1200	1250	0	3	1	1	3	－ 2	1	0	－	－	0	2	1	\rightarrow	－	Structure for side road crossing combined with cuttings up to 36 m high（but greater than 19 m ）in non－identified geotechnical constraint and rock combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access and some local disruption due to construction
1250	1300	。	${ }^{-3}$	－	－	3	2	。	－	。	－	0	2	4	－	－	
1300	1350	－	－3	－	${ }_{-}$	－	－2	－	－	－	－	。	2	－	－	－	
1350	1400	。	－3	1	－ 1	${ }_{3}$	－	。	－	0	。	。	－	1	5	．	
1400	1450	－	2	－	${ }^{-1}$	3	－	－	－	－	－	－	2	－	4	4	
1450	1500	。	${ }^{-1}$	－	${ }^{-1}$	${ }^{3}$	0	－	\bigcirc	0	\bigcirc	0	2	1	－3	3	combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access and some local disruption due to construction
1500	1550	0	－	$\stackrel{1}{1}$	－	${ }^{-3}$	－	－	－	－	－	－	2	－	3	3	
1550	1600	－	－	－	－	${ }^{-3}$	－	－	－	－	－	－	2	1	3	3	
1600	1650	0	。	${ }_{-}$	${ }_{-}$	${ }^{-3}$	－	－	\bigcirc	－	－	－	－	－ 1	－	3	
1650	1700	－	${ }_{-}$	－	${ }^{-}$	3	－	－	－	－	－	。	2		${ }^{-3}$	3	
1700	1750		1	－	－	.3	\bigcirc	2	\bigcirc	0	\bigcirc	－	2	1	． 5	－	
1750	1800	－	${ }^{-1}$	－	${ }^{-1}$	3	0	2	－	－	－	。	2		5	${ }_{-}$	
1800	1850	－	2	－	${ }_{-1}$	${ }^{-3}$	－ 1	2	－	－	。	－	2	1	${ }_{6}$	\bigcirc	
1850	1900	－	2	${ }_{-1}$	${ }_{-}$	3	－	2	－	－	－	－	2	． 1	－	－	
1900	1950	－	2	-1	－	${ }^{-}$	－	2	－	－	。	。	2	1	${ }_{6}$	－	
1950	2000	－	2	－	\pm	${ }^{-3}$	－	2	－	－	－	－	2	．	－ 5	－	
2000	2050	0	${ }_{-}$	－	－	3	。	2	－	－	－	。	2	1	s	－	
2050	2100	。	${ }^{-1}$.$^{-1}$	－	3	－	－	－	－	－	－	2	－	3	3	combination of level difference，hilliness，bendiness and earthworks $/ \mathrm{m}$ Difficult construction access and some local disruption due to construction
2100	2150	－	－	－	－	${ }^{-3}$	－	－	－	－	－	－	2	－	3	${ }^{-3}$	
2150	2200	－	.$^{-}$	－	－	3	－	－	－	－	－	－	2	4	3	－ 3	
2200	2250	－	${ }_{-}-$	$-$	－	3	－	\bigcirc	－	0	－	－	2	－	${ }^{-}$	3	
2250	2300	－	－	－	－	3	－	－	－	－	－	。	2	1	3	3	
2300	2350	0	－	－	.1	3	－ 1	\bigcirc	0	\bigcirc	\bigcirc	0	3	\bigcirc	－	－ 5	
2350	2400	－	2	－	－	3	${ }_{-1}$	－	－	－	－	－	3	－	－	－5	
2400	2450	－	2	1	－ 1	3	.$^{-1}$	－	－	－	－	－	3	－	5	．	
2450	2500	－	2	.$^{-}$	${ }_{-}$	${ }^{-3}$	${ }^{-1}$	－	－	－	－	－	3	。	5	s	
2500	2550	0	2	1	${ }^{-1}$	${ }^{-3}$.$^{-1}$	－	－	－	－	－	3	－	－5	5	
2550	2600	－	2	－	－	3	－	－	－	－	－	－	3	。	－	．	
2600	2650	－	2	－	-1	3	$\stackrel{-1}{ }$	。	。	－	－	－	3	。	－	．	
2650	2700	－	2	－	${ }^{-1}$	3	－	－	－	－	－	－	3	。	－	5	
2700	2750	0	3	－	1	${ }^{3}$	－ 2	。	－	0	0	0	3	。	7	\rightarrow	Cuttings up to 27 m high in rock combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access
2750	2800	－	3	-1	－	3	2	－	－	－	－	－	3	。	7	\rightarrow	
2800	2850	－	3	${ }^{-1}$	－	3	-2	－	－	0	－	－	3	－	\rightarrow	\rightarrow	
2850	2900	－	3	${ }_{-}$	${ }^{-1}$	3	-2	－	－	－	－	－	3	－	\rightarrow	\rightarrow	
2900	2950	－	3	${ }_{-}$	${ }_{-}$	3	2	－	－	。	－	－	3	－	\rightarrow	\rightarrow	
3950	3000	\div	${ }_{3}$	$\stackrel{-1}{-1}$	－	3	$\stackrel{-1}{-1}$	－	－	\bigcirc	－	－	3	－	\rightarrow	\rightarrow	

3050	3100	0	2	${ }^{-1}$	－1	． 3	${ }_{-}$	－	0	－	\bigcirc	－	3	。	－5	．	Cuttings up to 14.2 m high（but greater than 10 m ）in rock combination of level difference，hilliness，bendiness and eambunorssm Difficult construction access
3100	3150	0	－	－ 1	${ }^{-1}$	${ }^{-3}$	0	0	。	。	0	。	3	。	4	4	combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access
3150	3200	。	－	－ 1	－1	${ }^{-3}$	。	。	。	。	。	。	3	0	4	4	
3200	3250	0	－1	－ 1	${ }^{-1}$	3	0	0	－	0	0	0	3	。	4	4	
3250	3300	。	－ 1	－ 1	－1	${ }^{3}$	0	。	。	。	。	。	3	。	4	4	
3300	3350	。	－2	－1	－1	${ }^{-3}$	－1	。	。	。	。	。	． 3	。	． 5	． 5	Embankments up to 19.0 m high in non－identified geotechnical constraint combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access
3350	3400	。	-2	－ 1	${ }_{-1}$	－3	${ }_{-1}$	。	。	。	。	。	． 3	。	－ 5	－ 5	
3400	3450	。	-2	－ 1	-1	${ }^{3}$	${ }_{-1}$	。	－	。	。	。	．	。	－	－	
3450	3500	。	－2	－1	${ }_{-1}$	－ 3	${ }^{-1}$	。	。	－	。	。	－ 3	。	5	－ 5	
3500	3550	。	－2	－1	${ }_{-1}$	${ }^{-3}$	－2	。	。	。	。	。	－3	。	－	－	Embankments up to 21 m high in non－identified geotechnical constraint combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access
3550	3600	。	2	－ 1	－1	－ 3	－2	－	－	。	。	。	3	。	－	－	
3600	3650	－	${ }^{-3}$	－ 1	${ }^{-1}$	${ }^{-3}$	2	－	－	－	－	－	． 3	－	-7	\rightarrow	
3650	3700	－	${ }^{-3}$	－ 1	－ 1	－ 3	${ }_{-1}$	。	。	－	。	。	3	。	－	－	
3700	3750	。	－2	－1	${ }_{-1}$	${ }^{3}$	－1	。	。	。	。	。	－3	。	${ }_{-5}$	－	affruut constuction aceess
3750	3800	。	－2	－ 1	${ }^{-1}$	${ }^{-3}$	－ 1	－	。	－	。	。	3	。	－ 5	－	
3800	3850	。	－2	${ }_{-1}$	－1	3	－	。	。	。	。	。	－	0	－5	． 5	
3850	3900	。	2	－1	－1	－ 3	。	。	。	。	0	。	.3	。	4	4	combination of level difference，hilliness，bendiness and earthworks／m on access
3900	3950	。	－ 1	－ 1	－ 1	－ 3	。	－	。	。	。	。	3	。	4	4	
3950	4000	－	－	－	－-1	${ }^{3}$	0	－	－	0	。	。	3	。	4	4	
4000	4050	－	-1	－ 1	－1	－ 3	0	。	－	0	－	。	3	。	4	4	
4050	4100	0	2	${ }_{-1}$	－1	－ 3	－	0	0	0	0	。	${ }_{3}$	。	． 5	－	Cuttings up to 12.2 m high in rock earthworks／m Difficult construction access
4100	4150	。	${ }_{-3}$	${ }_{-1}$	${ }_{-1}$	${ }^{-3}$	${ }_{-2}$	。	。	。	。	－	3	。	－	－	Cuttings up to 30.2 m high in rock combination of level difference，hilliness，bendiness and earthworks／m Difficult construction access
4150	4200	－	${ }^{-3}$	${ }_{-1}$	－1	${ }^{3}$	－2	－	－	－	。	－	3	。	-7	\rightarrow	
4200	4250	。	${ }^{-3}$	－ 1	${ }^{-1}$	${ }^{3}$	－2	－	－	－	。	－	${ }^{-3}$	－	－ 7	$\cdot 7$	
4250	4300	。	${ }^{-3}$	－-1	${ }^{-1}$	－ 3	－2	。	0	－	。	。	－	。	\rightarrow	\rightarrow	
4300	4350	。	${ }^{3}$	－-1	${ }^{-1}$	${ }^{-3}$	－2	－	－	。	。	。	${ }^{3}$	－	\rightarrow	\rightarrow	
4350	4400	。	${ }^{-3}$	－ 1	－-1	${ }^{-3}$	－ 2	。	。	。	。	。	－3	。	\rightarrow	\rightarrow	
4400	4450	。	${ }^{-3}$	－ 1	－1	－ 3	－2	。	。	。	。	。	3	。	－ 7	\rightarrow	
4450	4500	。	3	－ 1	${ }_{-1}$	3	－ 2	。	0	0	0	。	3	。	\rightarrow	－7	
4500	4550							。									Fins5 4229
4550	4600																

Rules

Structures Score + Flooding Score (Average of L, M and N
+Utilities score + Constructability Score (Minimum value of $\mathrm{P} \& \mathrm{Q}$
Then if total < or equal to -9 then should be coloured red
because this represents possibility of 3 reds or 4 ambers
If total is between -6 and -8 should be coloured amber since this
could represent 2 reds or $3 / 4$ ambers.
If total is between -3 and -5 sho

15450	15500	0	-1	-2	0	-3	0	0	0	0	0	0	-1	-1	-2	-2		
15500	15550	0	-1	-2	0	-3	0	0	0	0	0	0	-1	-1	-2	-2		
15550	15600	0	-1	-2	0	-3	0	0	0	0	0	0	-1	-1	-2	-2		
15600	15650	0	-1	-2	0	-3	0	0	0	0	0	0	-1	-1	-2	-1	-2	-2

Rules

Structures Score＋Flooding Score（Average of L, M and N ）
＋Utilities score＋Constructability Score（Minimum value of P\＆Q）
Then if total＜or equal to -9 then should be coloured red
because this represents possibility of 3 reds or 4 ambers
If teresent 2 reds or $3 / 4$ amb
If total is between -3 and -5 sho

												c 咅 品			$\begin{aligned} & \approx \\ & \frac{0}{\sigma} \end{aligned}$		
				$\begin{aligned} & \text { Wo } \\ & 0 \\ & 0 \\ & \vdots .0 \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { 도́ } \\ & \text { 恳 } \\ & 0 \end{aligned}$		$\begin{aligned} & 00 \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{3}{3} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$					$\begin{aligned} & c \\ & \text { 言 } \\ & \stackrel{\rightharpoonup}{\bar{\sim}} \end{aligned}$		$\begin{aligned} & \overrightarrow{0} \\ & \frac{0}{3} \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 뭏 } \\ & \underline{\partial} \end{aligned}$		
0	50	－	－	${ }_{-1}$	${ }_{-}$	3	0	－	0	0	－	－	2	1	3	3	Combination of level difference，bendiness，hilliness and earthworks／m Difficult construction access and some local disruption due to construction
50	100	－	－	1	－	${ }^{3}$	－	－	－	－	－	－	2	．	3	－	
100	150	－	－	－ 1	－	3	－	－	－	－	－	－	2	－	${ }^{3}$	${ }^{-3}$	
150	200	－	－	－ 1	-1	3	－	。	－	－	－	－	2	1	3	－3	
200	250	。	1	－	${ }^{-1}$	${ }^{3}$	0	－	－	0	－	0	2	1	3	3	
250	300	．	－ 1	－	${ }^{-1}$	${ }^{3}$	－	－	－	－	－	－	2	1	4	4	
300	350	－	－	－	－	${ }^{3}$	－	－ 1	－	－	－	－	2	1	4	4	
350	400	－	1	1	． 1	${ }^{3}$	－	1	－	－	－	－	2	1	4	4	
400	450	0	\bigcirc	－	－	3	0	－	0	0	\bigcirc	0	2	1	－ 3	3	combination of level difference，bendiness，hilliness and earthworks／m Difficult construction access and some local disruption due to construction
450	500	－	－	${ }_{-}-$	－ 1	${ }^{3}$	－	－	－	－	－	－	2	1	${ }^{-3}$	${ }^{-3}$	
500	550	－	－	-1	－	${ }^{3}$	－	。	－	－	－	－	2	1	3	${ }^{3}$	
550	600	－	1	${ }_{-}$	－	3	－	－	－	－	。	－	2	－	3	${ }^{-3}$	
600	650	－	－ 1	.$^{-1}$	${ }^{-1}$	${ }^{3}$	－	${ }_{-}$	－	－	－	－	2	${ }^{-1}$	4	4	struture tors ster road cossing
650	700	0	-1	－	－1	3	。	－	。	。	－	0	－	-1	－	3	combination of level difference，bendiness，hilliness and earthworks／m Difficult construction access and some local disruption due to construction
700	750	0	－	－	${ }_{-1}$	3	1	\bigcirc	0	\bigcirc	\bigcirc	0	2	1	${ }_{4}$	4	
750	800	－	2	－	${ }_{-}$	${ }^{3}$	－	－	－	－	－	－	2	－	4	4	
800	850	。	3	－	-1	3	2	\bigcirc	0	0	\bigcirc	0	2	－1	6	－	
850	900	－	3	－	－	3	－ 2	。	－	－	－	－	2	1	－	－	
900	950	0	${ }^{3}$	－	－ 1	.3	－ 2	－	－	－	－	-1	2	1	7	－ 7	
950	1000	－	3	.$^{-1}$	${ }^{-1}$	3	． 2	－	－	－	－	${ }_{-}$	2	1	$\cdot 7$	－ 7	
1000	1050	。	.3	${ }^{-1}$	－ 1	3	2	－	－	－	－	－	2	1	－	－	
1050	1100	－	3	． 1	－	3	2	－	－	0	－	－	2	－1	-6	－	
1100	1150	－	${ }^{3}$	－ 1	－	${ }^{3}$	－ 2	\bigcirc	－	0	－	－	2	1	${ }^{6}$	－	
1150	1200	－	3	${ }^{-1}$	${ }^{-1}$	3	． 2	－	－	0	－	－	2	1	${ }_{6}$	－	
1200	1250	－	${ }^{3}$	${ }^{-}$	${ }_{-}$	${ }^{3}$	－2	－	。	－	－	－	2	－	－	－	
1250	1300	－	3	－	－	3	${ }^{3}$	－	－	0	－	－	2	－	7	\rightarrow	Cuttings up to 45 m high in rock combination of level difference，bendiness，hilliness and earthworks／m Difficult construction access and some local disruption due to construction
1300	1350	。	${ }^{3}$	－	－	3	${ }^{3}$	。	。	。	－	－	2	－	\rightarrow	\rightarrow	
1350	1400	－	${ }^{3}$	－ 1	－	${ }^{3}$	${ }^{-3}$	。	－	。	－	－	2	1	\rightarrow	\rightarrow	
1400	1450	－	3	${ }^{-1}$	${ }_{-}$	${ }^{3}$	${ }^{3}$	－	－	－	－	－	2	1	7	\rightarrow	
1450	1500	0	3	1	－	3	－	－	\bigcirc	0	\bigcirc	0	2	1	－	${ }^{-6}$	Cuttings up to 36 m high in rock earthworks／m Difficult constr to construction
1500	1550	－	3	.$^{-1}$	－	3	－ 2	－	－	－	－	－	2	，	${ }^{6}$	－	
1550	1600	－	${ }^{3}$	-1	${ }^{-1}$	${ }^{3}$	－2	－	－	－	－	－	2	．	\checkmark	－	
1600	1650	－	2	${ }^{-1}$	${ }_{-1}$	3	－ 1	－	－	．	－	－	2	－ 1	4	4	
1650	1700	－	－ 1	-1	-1	3	－	－	－	－	－	－	2	${ }_{-1}$	${ }^{3}$	－3	（e）
1700	1750	－	－	－ 1	${ }_{-1}$	－ 3	－	－	－	－	－	－	2	－ 1	3	3	
1750	1800	0	${ }_{-1}$	－1	-1	－	.$^{-1}$	1	0	0	\bigcirc	－	2	．	－	5	
1800	1850	－	2	－ 1	${ }_{-1}$	3	－	${ }_{-1}$	－	－	－	\bigcirc	2	－	－	－	
1850	1900	0	3	${ }_{-1}$	${ }_{-1}$	3	－ 2	0	\bigcirc	0	。	－	2	－	－	－	
1900	1950	－	3	1	－	3	－ 2	。	。	－	－	－	2	－	－	－	
1950	2000	－	${ }^{-3}$	－	${ }^{-1}$	${ }^{3}$	－2	－	－	－	－	－	2	－	\checkmark	－	
2000	2050	－	3	${ }_{-}$	${ }^{-1}$	${ }^{3}$	－ 2	－	－	－	－	。	2	－ 1	${ }_{6}$	－	
2050	2100	0	3	${ }^{-}$	－	${ }^{3}$	－ 2	－	－	－	。	。	2	－	${ }^{6}$	－	
2100	2150	－	3	－	-1	3	2	。	。	－	。	－	－	－	${ }^{6}$	－	
2150	2200	－	3	${ }_{-1}$	-1	3	2	－	0	－	－	－	2	－	\bigcirc	\div	
2200	2250	－	3	.$^{-1}$	-1	3	－ 2	－	－	－	。	－	2	${ }^{-1}$	${ }^{6}$	－	
2250	2300	－	3	1	－	3	2	－	－	－	－	－	2	.1	\checkmark	－	
2300	2350	－	3	${ }_{-}$	－	3	－ 2	－	－	－	－	－		－	${ }_{6}$	${ }_{-}$	
2350	2400	0	3	－	－	3	－2	－	－	－	－	－		－	\checkmark	－	
2400	2450	－	${ }^{3}$	－	－	${ }^{3}$	－2	－	－	－	－	－	－	－	\checkmark	－	
2450	2500	\bigcirc	3	－	－	3	－ 2	－	－	－	－	－	－	－	${ }_{6}$	－	
2500	2550	－	3	－	－	3	－ 2	－	－	－	－	－	2	－	\bigcirc	\bigcirc	
2550	2600	－	3	${ }_{-}$	\pm	3	－	。	－	－	－	－	2	${ }^{-1}$	－	－	
2600	2650	．	3	－	－	3	－	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	2	－	\rightarrow	\rightarrow	
2650	2700	－	3	－	－	3	－2	－	－	－	－	－	2	－	\rightarrow	\rightarrow	
2700	2750	－	，	${ }_{-1}$	－	3	－ 2	－	－	－	－	－	2	－	7	\rightarrow	
2750	2800	\bigcirc	3	${ }_{-}$	${ }_{-}$	3	2	.1	－	－	－	－	2	1	\rightarrow	－ 7	
2800	2850	\bigcirc	－3	1	－	3	－ 2	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	2	1	－	－	
2850	2900	－	${ }^{3}$	－	－	3	2	。	。	。	。	。	2	－	－	－	

2900	2950	0	－2	${ }_{-1}$	－1	． 3	${ }_{-1}$	0	0	0	0	0	2	1	4	4	
2950	3000	0	－	${ }_{-1}$	－1	${ }^{3}$	－ 1	0	0	0	0	0	－2	－1	4	4	
3000	3050	0	－	${ }^{-1}$	－1	${ }^{-3}$	－1	。	0	0	0	0	2	－ 1	4	4	
3050	3100	0	－ 1	－ 1	－1	.3	0	0	0	0	0	0	2	－	－3	－3	combination of level difference，hilliness，bendiness and earthworks／m Very difficult construction access and some local disrupton
3100	3150	。	${ }_{-1}$	－1	${ }_{-1}$	－	－	－	0	－	0	0	－2	－1	${ }^{-3}$	${ }^{-3}$	
3150	3200	。	－ 1	－ 1	${ }^{-1}$	－	－	。	。	。	。	。	－2	－ 1	${ }^{-3}$	－ 3	
3200	3250	0	－1	－1	－1	． 3	0	－	0	0	－	0	－2	－ 1	${ }^{-3}$	${ }^{-3}$	
3250	3300	。	。	－ 1	${ }_{-1}$	3	。	。	0	。	。	0	2	－	${ }^{-3}$	－ 3	
3300	3350	0	${ }_{-1}$	－ 1	${ }_{-1}$	${ }^{-3}$	。	。	。	。	。	。	－	－	－ 3	－ 3	
3350	3400	。	${ }^{-1}$	${ }_{-1}$	-1	${ }^{-3}$	－	。	。	。	。	。	－	－	${ }^{-3}$	${ }^{-3}$	
3400	3450	0	${ }^{-1}$	－ 1	${ }_{-1}$	${ }^{-3}$	0	0	0	0	0	\bigcirc	－	－	－3	－3	
3450	3500	。	${ }_{-1}$	${ }_{-1}$	－ 1	${ }^{-3}$	。	。	。	。	。	。	－2	－ 1	－3	－ 3	
3500	3550	0	－ 1	－ 1	－ 1	－ 3	－ 1	－	0	0	0	0	2	－1	4	4	Cuttings up to 16 m high in rock combination of level difference，hilliness，bendiness and earthworks／m Very difficult construction access and some local disrupton
3550	3600	。	-2	－ 1	${ }_{-1}$	－ 3	－2	0	0	0	0	0	－	－1	． 5	－ 5	
3600	3650	。	－3	－ 1	-1	－ 3	${ }_{-2}$	。	0	。	。	。	－2	－	－	－ 6	
3650	3700	。	－ 3	－ 1	${ }_{-1}$	－ 3	－2	。	0	。	。	。	－	－	－	－	
3700	3750	。	${ }^{-3}$	－ 1	${ }_{-1}$	${ }^{3}$	－2	。	0	。	。	0	2	－ 1	－	.6	
3750	3800	。	${ }^{-3}$	－1	-1	－ 3	－2	。	0	。	－	\bigcirc	2	－1	－	－ 6	
3800	3850	。	${ }^{-3}$	${ }^{-1}$	-1	3	－2	。	0	。	。	\bigcirc	－	1	－	－ 6	
3850	3900	。	.$^{-3}$	－1	${ }_{-1}$	${ }^{-3}$	-2	。	0	。	0	。	－	－	－	－ 6	
3900	3950	0	${ }^{-3}$	${ }^{-1}$	－ 1	${ }^{-3}$	－2	。	。	。	。	0	－	－1	－	－ 6	
3950	4000	－	${ }^{-3}$	${ }^{-1}$	－1	${ }^{-3}$	－2	。	0	。	－	0	－2	－ 1	－	－ 6	
4000	4050	0	${ }^{-3}$	${ }_{-1}$	－1	${ }^{-3}$	－2	。	0	。	。	0	－	－1	－	－ 6	
4050	4100	－	${ }^{-3}$	－ 1	－	3	－2	－	0	－	－	0	2	${ }^{-1}$	－	－	
4100	4150	。	${ }^{-3}$	${ }^{-1}$	${ }_{-1}$	${ }^{3}$	－ 2	－	0	－	－	－	2	－1	${ }_{6}$	－ 6	
4150	4200	－	${ }^{-3}$	－ 1	－1	－ 3	－2	。	0	。	0	0	2	－1	－	－ 6	
4200	4250	－	${ }^{-3}$	－-1	－ 1	${ }^{3}$	－2	－	－	－	－	－	－2	－	－	－ 6	
4250	4300	－	${ }^{-3}$.$^{-1}$	－1	${ }^{-3}$	-2	。	0	－	。	0	－	－ 1	－	－	
4300	4350	－	${ }^{-3}$	${ }_{-1}$	-1	${ }^{3}$	-2	\bigcirc	0	－	0	。	－	－ 1	－	－ 6	
4350	4400	。	－ 3	${ }_{-1}$	-1	${ }^{-3}$	-2	。	0	。	。	\bigcirc	－	－ 1	－	－ 6	
4400	4450	。	${ }^{-3}$	${ }^{-1}$	－1	． 3	-2	－	0	\bigcirc	0	\bigcirc	2	－ 1	－	－	
4450	4500	。	${ }^{-3}$	${ }^{-1}$	－	${ }^{3}$	－ 2	－	0	。	－	0	2	－ 1	－	－ 6	
4500	4550	。	${ }^{-3}$	${ }_{-1}$	－1	${ }^{-3}$	-2	。	0	。	。	。	2	－ 1	\checkmark	－ 6	
4550	4600	。	${ }^{-3}$	${ }^{-1}$	－1	${ }^{3}$	－2	。	。	。	。	。	－2	－	－	－	
4600	4650	－	.3	${ }^{-1}$	${ }_{-1}$	－ 3	－2	。	。	。	。	。	－	－ 1	－	－ 6	
4650	4700	－	${ }^{-3}$	－1	-1	${ }^{3}$	-2	\bigcirc	－	\bigcirc	\bigcirc	。	2	－ 1	－	－ 6	
4700	4750																
4750	4800																

Rules

Rules
Total Score
Structures Score＋Flooding Score（Average of L，M and N ）
＋Utilities score＋Constructability Score（Minimum value of $\mathrm{P} \& \mathrm{Q}$
Then if total＜or equal to－9 then should be coloured red
because this represents possibility of 3 reds or 4 ambers
If total is between -6 and -8 should be coloured amber since this could represent 2 reds or $3 / 4$ ambers．
If total is between -3 and -5 sho

							$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{2} \\ & \stackrel{3}{3} \end{aligned}$	告 \vdots 言							$\begin{aligned} & \text { 几 } \\ & \frac{0}{0} \end{aligned}$		
															$\begin{array}{\|l} -1 \\ \underline{0} \\ \underline{t} \end{array}$	$\begin{aligned} & \frac{2}{2} \\ & \stackrel{\rightharpoonup}{C} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{3}{3} \\ & \frac{0}{3} \\ & \text { in } \end{aligned}$
0	50	－	－	－	－	－	。	1	－	－	\bigcirc	－	。	－	1	1	weturectrementons
50	100	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	
100	150	－	－	－	－	－	－	－	－	－	－	－	－	－	－	\bigcirc	
150	200	－	－	－	－	－	－	－	。	－	－	－	。	－	－	－	
200	250	－	－	－	－	－	－	－	。	－	。	。	－	－	－	－	
250	300	－	－	－	－	－	－	－	－	－	－	－	－	－	－	\bigcirc	
300	350	$\stackrel{-}{1}$	－	－	－	－	－	－	－	－	。	－	－	。	－	－	
350	400	－	－	－	。	。	－	－	。	。	。	。	0	。	－	－	
400	450	－	－	－	。	。	－	－	。	－	。	－	。	。	－	－	
450	500	－	－	－	－	。	。	－	－	－	－	。	\bigcirc	。	－	\bigcirc	
500	550	－	－	－	－	。	－	－	－	－	－	－	－	－	\bigcirc	－	
550	600	$\stackrel{1}{4}$	－	－	－	－	－	－	－	。	－	。	。	。	－	－	
600	650	－	－	－	。	。	－	－	－	。	。	。	。	。	－	－	
650	700	－	－	\bigcirc	－	－	－	－	－	－	－	－	。	。	－	－	
700	750	－	1	－	。	－	－	－	。	。	。	－	。	。	－	－	
750	800	－	－	－	－	。	－	－	。	。	。	－	。	。	－	－	
800	850	$\stackrel{1}{4}$	－	－	－	－	－	－	－	－	－	－	。	－	－	－	
850	900	－	－	－	0	－	－	－	－	－	－	－	。	－	－	－	
900	950	$\stackrel{1}{4}$	1	－	－	。	－	－	－	－	－	。	。	。	－	－	
950	1000	－	－	－	－	。	－	－	。	－	。	。	0	\bigcirc	－	－	
1000	1050	$\stackrel{-}{1}$	1	－	。	。	－	－	。	－	。	－	。	－	－	1	
1050	1100	－	－	－	。	。	－	－	。	－	。	－	2	。	3	3	Mmeremenemention omomp
1100	1150	$\stackrel{-}{1}$	－	－	－	。	－	－	－	－	－	。	2	－	3	3	
1150	1200	－	－	－	。	。	－	－	－	。	。	。	2	。	3	3	
1200	1250	$\cdot 1$	－	－	－	－	－	－	－	－	－	－	2	－	3	3	
1250	1300	${ }^{-}$	1	－	－	－	－	－	－	－	－	－	2	。	3	3	
1300	1350	\cdot	1	－	－	－	－	－	－	－	－	－	2	－	3	3	
1350	1400	－	1	－	－	－	－	－	。	。	。	－	2	－	3	3	
1400	1450	－	1	－	－	－	－	\bigcirc	－	－	。	。	2	－	3	3	
1450	1500	－	1	－	．	。	－	。	－	－	。	。	2	－	3	3	
1500	1550	－	1	－	。	。	－	－	－	－	．	。	2	－	2	2	
1550	1600	\cdot	1	－	－	。	．	－	－	。	。	。	2	。	2	2	
1600	1650	－	1	－	－	。	。	。	。	。	。	。	2	－	2	2	
1650	1700	－	1	－	。	。	－	－	。	。	。	。	2	．	2	2	
1700	1750	\cdot	－	－	－	。	。	。	－	－	－	。	2	。	2	2	
1750	1800	－	1	－	－	－	0	－	－	－	－	－	2	－	2	2	
1800	1850	-1	1	－	－	－	－	－	－	－	－	－	2	。	2	2	
1850	1900	－	－	－	－	。	－	－	－	。	。	。	2	－	2	2	
1900	1950	－	1	－	－	－	－	－	。	－	。	。	2	。	2	2	
1950	2000	－	1	－	－	－	0	－	－	－	－	。	2	－	2	2	
2000	2050	－	1	－	。	－	－	－	－	－	。	。	2	－	2	2	
2050	2100	－	－	－	－	－	－	－	－	。	。	。	2	－	2	2	
2100	2150	．	－	－	－	。	0	－	－	－	－	－	2	－	2	2	
2150	2200	－	1	－	－	。	－	－	－	。	－	。	2	。	2	2	
2200	2250	1	1	－	－	－	0	－	－	－	－	－	2	－	2	2	
2250	2300	－	－	－	。	。	－	－	－	－	－	。	2	－	2	2	
2300	2350	\therefore	4	－	－	。	。	。	－	－	－	。	2	。	2	2	
2350	2400	1	1	－	－	－	0	－	－	－	－	－	2	。	2	2	
2400	2450	1	1	－	－	－	－	－	－	－	－	－	2	－	2	2	
2450	2500	1	2	－	－	－	－	－	－	－	－	。	2	。	4	4	
2500	2550	－	，	。				。	－	－	－		，	。	－		Wind Turbines within 100 m alignment－ch 2535 and ch 2572 Difficult construction access．Cutting up to 16 m in non identified geotechnical constraint．Construction access
2550	2600	－	2	－	\％	\bigcirc	－	\bigcirc	\because	\because	－	2	2	。	．		
2600	2650		2								0	－	2	－			Cumin will
		－	2	－	－	－	1	－	－	－	。	。	2	。	4	4	Comsant
2650	2700	－	2	－	－	－	－	－	－	－	－	。	2	。	s	s	Somele
2700	2750	－	1	－	．	。	－	－	－	－	－	。	2	－	2	2	
2750	2800	\cdots	1	－	\bigcirc	－	0	－	－	－	－	－	2	\bigcirc	2	2	
2800	2850	\therefore	$\stackrel{-}{-}$	－	－	。	－	－	－	．	－	。	2	－	2	2	
2850	2900	\cdots	1	－	\bigcirc	－	－	－	－	。	－	－	2	。	2	2	
2900	2950	－	－	－	－	。	0	－	－	－	－	。	2	－	2	2	
2950	3000	4	－	0	－	－	0	－	－	－	－	。	2	。	2	2	
33000	3050	1	－	－	\bigcirc	－	－	－	－	－	－	。	2	－	2	2	
33050	3100	－	－	－	－	。	．	－	－	－	－	－	2	－	2	2	
3100	3150	－	－	－	．	－	－	－	－	－	－	－	2	。	2	2	
33150	3200	－	－	－	－	－	－	－	－	－	－	。	2	\bigcirc	2	2	
3200	3250	－	－	－	－	－	－	－	－	－	。	－	2	－	2	2	
3350	3300	－	－	－	－	－	－	－	－	－	－	－	2	－	2	2	
3300	3350	－	－	－	－	－	－	－	－	－	。	。	2	－	2	2	
3350	3400	1	－	－	－	－	0	－	－	－	－	。	2	－	2	2	
3400	3450	\therefore	－	－	－	－	－	－	－	－	－	－	2	。	2	2	
3350	3500	1	－	－	0	－	0	－	－	－	－	－	2	。	2	2	
3300	3550	1	－	－	－	－	－	\bigcirc	－	－	－	－	2	\bigcirc	2	$\stackrel{1}{2}$	
3550	3600	\therefore	。	－	－	。	0	－	－	－	－	。	2	。	2	2	
3600	3650	\cdots	－	－	－	－	－	－	－	－	－	－	2	－	2	2	
3350	3700	4	－	－	－	－	－	－	－	－	－	。	2	－	2	2	
3700	3750	\therefore	4	－	－	\bigcirc	－	－	－	－	。	。	2	－	2	2	
3750 3800	3800 3850	\therefore	－	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－	－	2	－	2	2	
38800	3850	1	－	－	0	\bigcirc	－	－	－	－	－	－	2	－	2	2	
3850	3900				。				－	。	－	。	2	。			
3900	3950	－	1	－	－	－	－	－	－	。	－	。	2	－	4	4	
3950	4000	－	1	。	－	。	\cdots	\pm	－	－	－	。	2	。	4	4	
4000	4050	－	${ }^{-}$	－	－	。	。	。	。	。	。	。	2	。	2	2	
4050	4100	－	－	。	－	。	。	。	。	。	。	。	2	。	2	2	

4100	4150	－	－	－	－	－	－	。	。	。	。	－	2		2		
4150	4200	－	－	－	－	－	。	。	。	。	。	－	2	。	2	2	
4200	4250	－	－	－	－	－	－	－	－	－	。	\bigcirc	2	－	2	2	
4250	4300	－	4	－	－	－	－	－	－	－	－	－	2	。	2	－	
4300	4350	-1	\bigcirc	\bigcirc	－	。	。	。	。	。	。	－	2	－	2	2	
4350	4400	－	－	－	。	－	－	－	－	。	。	－	2	。	2	2	
4400	4450	－	－	－	－	\bigcirc	－	－	－	－	－	－	2	。	2	2	
4450	4500	$-$	－	－	。	\bigcirc	－	－	0	\bigcirc	－	0	2	－	2	2	
4500	4550	\therefore	${ }^{-}$	－	。	－	。	。	。	。	。	－	2	。	2	2	
4550	4600	－	1	。	－	－	。	。	。	。	。	－	2	。	2	2	
4600	4650	－	1	。	。	－	。	。	。	。	。	－	2	－	2	2	
4650	4700	－	－	－	－	－	。	。	－	。	。	－	2	。	2	2	
4700	4750	－	1	－	－	－	－	－	－	－	－	－	2	－	${ }^{3}$	3	Cuttings up to 11.5 m high in rock combin of level difference and difficult construction access
4750	4800	$-$	2	－	\bigcirc	－	$\stackrel{-}{-}$	。	。	。	。	－	2	。	4	4	
4800	4850	－	2	－	－	－	－	。	。	。	。	－	2	－	4	4	
4850	4900	－	2	。	。	。	。	。	。	。	。	－	2	－	${ }^{3}$	3	
4900	4950	－	1	－	－	。	。	。	。	。	。	－	2	。	2	－	
4950	5000	－	，	。	。	－	。	。	。	。	。	－	2	。	2	2	
5000	5050	－	1	－	－	－	－	－	－	。	。	－	2	。	．	，	New bridge over Garlet Burn and side road－length 350 m on potentially compressible ground combination of level difference and very difficult construction access
5050	5100	－	2	。	。	－	－	3	－	。	。	－	2	－	－	－	
5100	5150	－	3	。	。	－	3	3	。	。	。	－	2	。	－	－	
5150	5200	1	3	－	－	－	${ }^{-}$	\cdots	－	－	。	－	2	－	－	，	
5200	5250	－	3	－	－	－	${ }^{3}$	3	－	。	。	－	2	。	\bigcirc	－	
5250	5300	-1	3	－	－	－	－	3	－	。	。	－	2	－	\rightarrow	－	
5300	5350	－	2	。	－	－	－	3	。	。	。	－	2	－	\rightarrow	－	
5350	5400	－	－	－	－	－	。	3	。	。	。	－	2	－	－	，	
5400	5450	－	－	。	－	－	－	。	。	。	。	。	2	－	2	2	
5450	5500	－	${ }^{-}$	。	－	－	。	。	。	。	。	。	2	。	2	－	
5500	5550	\cdots	1	－	－	－	。	。	－	－	。	。	2	。	2	2	
5550	5600	－	－	。	－	－	。	。	。	。	。	－	2	。	－	2	
5600	5650	－	－	－	－	－	。	。	。	。	。	－	2	－	2	2	
5650	5700	－	－	－	。	－	。	。	。	。	。	－	2	－	2	2	
5700	5750	－	－	－	。	－	－	－	。	－	－	。	2	－	2	2	
5750	5800	－	－	。	－	－	。	。	。	。	。	。	2	－	2	2	
5800	5850	－	－	－	－	－	。	。	－	－	－	－	2	－	3	2	
5850	5900	－	－	－	－	－	。	。	。	。	。	。	2	－	2	2	
5900	5950	－	－	。	－	－	。	。	。	。	。	－	2	。	2	2	
5950	6000	－	－	－	－	－	。	。	。	－	－	－	2	－	2	2	
6000	6050	－	－	。	－	－	。	。	。	。	。	－	2	－	2	2	
6050	6100	－	1	－	－	－	－	－	－	－	－	－	2	－	2	－	
6100	6150	1	1	－	－	－	。	。	。	－	－	。	2	。	2	2	
6150	6200	－	${ }^{-}$	－	－	－	。	。	。	。	。	－	2	－	2	2	
6200	6250	－	1	－	－	－	－	。	。	。	。	－	2	－	2	2	
6250	6300	－	．	。	。	－	。	。	。	。	。	－	2	。	2	2	
6300	6350	－	－	－	－	－	。	。	．	－	。	－	2	－	2	2	
6350	6400	－	1	－	－	－	。	－	－	－	。	－	2	－	2	2	
6400	6450	，	1	－	－	－	。	－	－	－	。	－	2	－	2	－	
6450	6500	－	4	－	－	－	。	。	－	－	－	。	2	。	2	2	
6500	6550	－	－	。	－	－	。	。	。	。	。	－	2	－	2	2	
6550	6600	，	－	－	。	。	。	。	。	。	。	－	2	。	2	2	
6600	6650	－	－	－	－	－	。	。	。	。	。	－	2	。	2	2	
6650	6700	－	1	－	－	－	．	。	－	－	。	－	2	－	2	2	
6700	6750	－	\pm	－	－	－	。	。	－	－	－	。	2	。	2	2	
6750	6800	－	－	。	－	－	。	。	。	。	。	。	2	－	2	2	
6800	6850	－	1	－	－	\bigcirc	－	。	－	－	－	－	2	－	2	2	
6850	6900	，	2	。	．	－	．	－	－	。	－	。	2	。	4	4	constraint and roc
6900	6950	－	2	。	－	－	$\stackrel{-}{-}$	。	。	。	。	。	2	。	4	4	
6950	7000	－	2	－	－	－	$\stackrel{-}{-}$	。	。	。	。	－	2	－	4	4	
7000	7050	－	2	－	。	－	－	。	。	。	。	－	2	－	4	4	
7050	7100	－	2	－	－	－	－	。	。	－	－	－	2	－	4	4	
7100	7150	1	2	－	－	－	－	．	－	－	。	。	2	－	4	4	
7150	7200	\cdots	2	－	－	－	$\stackrel{-}{-}$	。	。	。	。	。	2	。	4	4	
7200	7250	－	2	－	－	－	$\stackrel{-}{-}$	。	。	。	。	－	2	。	4	4	
7250	7300	，	2	－	－	－	$\stackrel{-}{-}$	－	－	－	－	－	2	。	$\stackrel{ }{ }$	4	
7300	7350	－	2	－	。	－	－	－	－	－	。	－	2	。	5	s	Cuttings up to 29 m high in non－identified geotechn constraint and rock combination of level difference and very difficult construction access
7350	7400	－	3	。	－	－	2	。	。	．	。	。	2	。	5	S	
7400	7450	－	3	－	－	－						。	2	。	${ }^{5}$	S	
7450	7500	－	3	。	－	。	－	。	。	。	。	。	2	。	－	S	
7500	7550																
7550	7600												2	。	7		cuttings up to 28.5 m in rock and construction access issue constraint and rock
		－	3	－	－	－	－	\bigcirc	\bigcirc	－	－	－	2	－	5	s	combination of level difference and very difficult construction access
7600	7650	－	3	－	－	－	2	－	－	－	。	－	2	。	s	s	
7650	7700	－	3	－	－	－						。	2	。	S	s	
7700	7750	\cdots	3	－	－	－	－	。	。	。	。	。	2	－	3	s	
7750	7800	－	3	－	－	－	2	。	。	。	。	。	2	－	s	s	
7800	7850	－	2	。	。	。	－	。	。	。	。	。	2	。	4	4	Cuttings up to 19 m high in non－identified geotechnical constraint and rock combination of level difference and very difficult construction acces
7850	7900	－	2	－	\bigcirc	\bigcirc	$\stackrel{-}{-}$	${ }_{-}$	－	－	－	－	2	。	s	S	
7900	7950	－	2	。	。	。	－	。	。	－	－	－	2	。	4	4	Cuttings up to 19 m high in non－identified geotechnical constraint and rock combination of level difference and very difficult
7950	8000											－	2	。	4	4	为
		－	2	。	\bigcirc	－	\bigcirc	－	－	－	－	\bigcirc	2	。	3	3	come
8000	8050	－	－	。	－	－	。	。	．	。	。	－	2	。	2	2	
8050	8100	${ }_{-}$	。	－	\bigcirc	－	－	－	\bigcirc	－	－	－	2	－	2	2	
8100	8150	$\stackrel{-}{-}$	。	－	－	－	。	。	。	。	。	。	2	。	2	2	
8150	8200	－	－	－	－	－	。	。	－	。	。	－	2	－	2	2	
8200	8250	\cdots	${ }_{-}$	－	－	－	－	。	－	－	－	－	2	。	2	2	
8250	8300	－	－	－	－	－	－	－	。	－	－	－	2	。	3	3	Cuttings up to 12 m high（but greater than 10 m ）in rock combination of level difference and very difficult construction access
8300	8350	－	－	－	\bigcirc	－	－	。	－	－	。	－	2	－	3	3	
8350	8400	\therefore	2	。	－	－	。	。	。	。	。	。	2	。	3	3	Combenemo
8400	8450	－	${ }_{-}$	－	－	－	。	。	。	。	。	－	2	。	2	2	
8450	8500	\cdots	${ }_{-}$	－	－	－	。	。	。	。	。	－	2	。	2	2	
8500	8550	－	1	。	－	－	。	。	－	－	。	－	2	。	2	2	
8550	8600	－	2	。	－	－	－	－	－	－	－	－	2	。	4	4	cen
8600	8650	－	2	\bigcirc	－	－	${ }_{-}$	－	－	－	－	－	2	－	4	4	
8650	8700	－	2	。	。	－	2	－	。	－	－	－	2	。	．	．	ceiche
8700	8750	－	2	－	。	－	－	。	。	。	。	－		－	${ }^{3}$	s	
8750	8800	\pm	3	－	－	－	2	。	。	－	。	。	2	。	S	s	
8800	8850	\cdots	3	－	－	。	－	。	－	－	。	－	2	－	s	s	
8850	8900	\pm	3	－	－	－	－	。	－	－	。	－	2	。	s	s	
8900	8950	－	3	。	。	－	－	。	－	－	－	。	2	。	4	4	Comen
8950	9000			－	－	－	．	。	。	。	。	。	2	。	4	4	

9000	9050	1	2	－	。	－	。	－	－	。	－	－	2	。	${ }^{3}$	${ }^{3}$	
9050	9100	－	－	－	－	－	－	－	\bigcirc	－	－	\bigcirc	2	－	2	2	
9100	9150	－	－	－	－	－	－	－	－	－	－	－	2	。	2	2	
9150	9200	－	－	－	\bigcirc	－	\bigcirc	。	\bigcirc	\bigcirc	－	。	2	。	2	2	
9200	9250	－	${ }^{-}$	－	。	，	。	－	－	－	－	。	2	。	2	2	
9250	9300	－	1	。	\bigcirc	－	－	－	－	－	\bigcirc	\bigcirc	2	。	2	2	
9300	9350	\cdots	－	。	。	－	－	－	－	－	。	\bigcirc	2	。	2	2	
9350	9400	－	1	。	\bigcirc	－	－	－	－	－	－	－	2	。	2	2	
9400	9450	－	－	－	－	－	－	－	－	－	－	。	2	。	3	3	Embankments up to 13 m high on non－identified geotechnical constraints combination of level difference and very difficult
9450	9500	－	2	。	。	－	－	。	－	－	－	－	2	。	4	4	
9500	9550	．	2	－	。	－	－	。	－	－	－	。	2	。	4	4	
9550	9600	\cdots	2	－	。	－	$\stackrel{-}{1}$	。	\bigcirc	－	－	\bigcirc	2	－	4	4	
9600	9650	－	2	－	－	－	－	－	－	－	－	－	2	。	4	4	
9650	9700	1	2	－	。	－	－	－	－	－	－	－	2	。	4	4	
9700	9750	1	${ }_{-}$	－	－	－	－	。	\bigcirc	－	\bigcirc	0	2	－	2	2	
9750	9800	\cdots	${ }_{-}$	。	。	－	－	。	－	－	。	－	2	。	2	2	
9800	9850	$-$	\pm	\bigcirc	。	－	－	－	－	－	。	\bigcirc	3	。	3	3	
9850	9900	\therefore	－	－	－	－	－	－	－	－	－	。	3	。	3	3	
9900	9950	$\stackrel{-1}{ }$	－	－	－	－	－	。	－	－	－	－	3	－	3	3	
9950	10000	1	－	－	－	－	－	－	－	－	－	－	3	－	${ }^{3}$	3	
10000	10050	1	－	。	－	－	－	。	－	－	－	\bigcirc	3	。	3	3	
10050	10100	－		。	。	－	－	－	－	－	。	。	3	。	4	4	Cuttings up to 12 m high（but greater than 10 m ）in non－ identified ground combination of level difference and very difficult construction access
10100	10150	－	2	－	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	3	。	$\stackrel{5}{5}$	－	
10150	10200	1	2	\bigcirc	－	－	－	。	\bigcirc	－	－	\bigcirc	3	。	－	－	
10200	10250	－	2	。	。	。	$\stackrel{-}{1}$	。	－	－	－	。	3	。	${ }_{5}$	－	
10250	10300	－	$\stackrel{1}{4}$	－	。	。	。	－	－	－	－	。	3	。	3	3	cember
10300	10350	1	$\stackrel{1}{4}$	－	－	\bigcirc	－	－	\bigcirc	－	－	\bigcirc	3	－	3	${ }^{-3}$	
10350	10400	－	－	－	－	－	－	－	－	－	－	－	3	。	3	3	
10400	10450	－	－	。	－	－	－	－	\bigcirc	－	－	－	3	。	3	${ }^{3}$	
10450	10500	－	－	－	－	－	－	－	－	－	－	－	3	－	3	3	
10500	10550	1	${ }^{-}$	－	－	－	－	－	－	－	－	－	3	－	3	3	
10550	10600	\therefore	$\stackrel{1}{ }$	－	－	－	－	－	－	－	－	－	3	－	3	3	
10600	10650	1	1	。	。	－	－	－	－	－	－	－	3	。	3	3	
10650	10700	－	－	。	。	－	－	－	－	－	－	－	3	。	3	3	
10700	10750	1	－	。	－	－	－	。	－	－	－	。	3	\bigcirc	3	－	
10750	10800	1	${ }^{-}$	。	－	－	－	－	－	－	－	－	3	。	3	3	
10800	10850	－	2	。	－	。	－	。	。	。	。	。	3	。	S	．	Cuttings up to 19 m high（but greater than 10m）in n identified ground combination of level difference and very difficult construction access
10850	10900	1	2	－	\bigcirc	－	－	－	－	－	－	－	3	。	－	－	
10900	10950	－	2	－	。	－	－	。	－	－	－	\bigcirc	3	。	－	－	
10950	11000		2		－	－	．	－	。	－	．	．	，	。	．	．	er than 10 m ）in non identified ground combination of level difference and very difficult
11000	11050	$\stackrel{-1}{ }$	2	。	。	－	2	。	－	－	－	－	3	。	\bigcirc	－	
11050	11100										－	－		。	．	－	Cuttings up to 18 m high（but greater than 10 m ）in non identified ground combination of level difference and very difficult combination of level difference and very difficult
11100		－ 1	2	\bigcirc	\bigcirc	－	－			－	－	\bigcirc	3	－	－	．	cosmationocess
11150	11200	－	2	\bigcirc	－	\bigcirc	$\stackrel{-1}{-1}$	－	\bigcirc	\bigcirc	\bigcirc	。	3	\bigcirc	－	．	
11200	11250	-1	2	。	。	。	－	－	－	－	－	－	3	。	－	－	
11250	11300	1	2	－	。	－	－	。	－	－	－	。	3	－	\bigcirc	－	
11300	11350	1	2	。	。	－	。	－	－	－	－	。	2	1	${ }^{3}$	${ }^{-3}$	
11350	11400	1	${ }^{-1}$	－	－	－	\bigcirc	－	－	－	－	－	2	－	2	2	
11400	11450	－	1	。	－	－	－	。	－	。	。	。	2	，	2	－	
11450	11500	－	1	。	－	－	－	－	－	－	－	－	2	1	2	2	
11500	11550	－	。	。	。	－	－	－	－	－	－	－	2	1	2	－	
11550	11600	－	－	。	－	－	－	－	。	－	－	－	2	1	，	－	
11600	11650	$\stackrel{1}{1}$	\bigcirc	－	－	－	－	－	－	－	－	－	2	1	2	－	
11650	11700	－	$\stackrel{1}{4}$	－	－	－	－	－	－	－	－	－	2	－	$=$	－	
11700	11750	－	1	－	－	－	－	－	－	－	－	－	2	－	2	2	
11750	11800	－	－	。	。	－	－	。	－	－	－	。	2	1	2	－	
11800	11850	－	1	。	．	－	－	－	－	－	－	－	2	1	2	2	
11850	11900	$\stackrel{1}{1}$	$\stackrel{1}{4}$	－	－	－	－	－	－	－	－	－	2	1	2	2	
11900	11950	\therefore	$\stackrel{1}{4}$	－	－	－	－	－	－	－	－	。	2	．	2	2	
11950	12000	$\stackrel{-1}{ }$	－	。	。	－	－	－	－	－	－	－	2	－	2	－	
12000	12050	\therefore	－	－	－	－	\bigcirc	－	－	－	－	－	2	－	2	－	
12050	12100	$\stackrel{-1}{ }$	$\stackrel{1}{4}$	。	－	－	－	－	－	－	－		2		2	2	
12100	12150	\therefore	$\stackrel{1}{ }$	。	－	－	－	－	－	－	－	。	2	．	2	2	
12150	12200	1			。	－	－	－	－	－	－		2	\pm	2	2	
12200	12250	1	－	－	－	－	－	－	－	－	－	－	2	－	－	－	
12250	12300	$\stackrel{1}{ }$	－		。	－	－	－	－	－	－	。	2	－	2	2	
12300	12350	$\stackrel{-}{1}$	${ }^{-}$	－	－	－	\bigcirc	$\stackrel{1}{4}$	－	－	－	－	2	1	3	3	stature fos ste
12350	12400	$\stackrel{1}{4}$	4	－	－	－	－	－	－	－	－	－	2	．	2	2	
12400	12450	－	－	－	。	－	－	－	－	－	－	－	2	．	2	2	
12450	12500	$\stackrel{1}{1}$	．	－	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	2	2	－	4	－	Fisherford Reservoir（1991）located within this alignmen Noted within Scottish Water GIS as operational with a volume of 0.032 ML ．Construction access issues also．
12500	12550	－	4	－	－	－	－	－	－	－	－	－	2	4	2	2	
12550	12600	－	。	。	。	－	－	－	－	－	－	－	2	－	2	－	
12600	12650	－	4	。	。	－	－	－	－	－	－	。	2	1	2	2	
12650	12700	\therefore	4	－	－	－	－	－	－	－	－	－	2	，	2	2	
12700	12750	$\stackrel{-1}{ }$	4	－	－	－	－	－	－	－	－	－	2	－	2	2	
12750	12800	－		－	－	－	－	－	－	－	－	－	2	－	-2	－	
12800	12850	-1	${ }_{-}$	－	－	－	－	－	－	－	－	－	，	－	2	2	
12850	12900	\therefore	${ }_{-}$	－	－	－	－	－	－	。	－	。	2	－	2	2	
12900	12950	$\stackrel{1}{4}$	1	－	－	－	－	－	－	－	－	－	2	1	2	2	
12950	13000	\therefore	。	－	－	－	－	－	－	－	－	。	2	．	2	2	
13000	13050	$\stackrel{-1}{ }$	。	。	。	－	－	－	－	－	－	－	2		2	2	
13050	13100	\therefore	${ }_{-}$	。	。	－	－	－	－	－	－	－	2	1	2	2	
13100	13150	\therefore	${ }_{-}$	－	－	－	－	－	－	－	\bigcirc	－	2	－	2	－	
13150	13200	\therefore	1	－	－	－	－	－	－	－	－	－	2	，	2	2	
13200	13250	－	。	。	－	－	－	－	－	－	－	－	2	\pm	2	2	
13250	13300	－	－	。	。	－	－	－	－	－	－	－	2		2	2	
13300	13350	－	－	－	－	－	－	－	－	－	－	－	－	，	$=$	2	
13350	13400	$\stackrel{1}{ }$	－	－	。	－	－	－	－	－	－	－	4	2	\therefore	$=$	
13400	13450	$\stackrel{-1}{ }$	－	－	－	－	－	－	－	－	－	－	1		2	2	
13450	13500	\therefore	－	－	－	－	－	－	－	－	－	－	，	－	2	2	
13500	13550	${ }^{-}$	\bigcirc	－	。	－	\bigcirc	－	－	－	－	。	－	2	-2	－	
13550	13600	\rightarrow	${ }_{-}$	。	。	－	－	－	－	－	－	－	1	，	2	2	
13600	13650	\therefore	${ }_{-}$	－	。	－	－	－	－	－	－	－	\pm	2	3	3	
13650	13700	\therefore	${ }_{-}$	－	－	－	－	－	－	－	－	－	\pm	，	2	2	
13700	13750	－	\pm	。	。	－	－	－	－	－	。	。	1	2	2	2	
13750	13800	\therefore	－	－	－	－	－	－	－	－	－	－	4	2	2	2	
13800	13850	－	－	－	－	－	－	－	－	－	－	－	－	，	2	2	
13850	13900	－	－	－	－	－	－	－	－	－	－	－	2	1	2	2	
13900	13950	\cdots	－	－	－	－	－	－	－	－	－	，	2	．	2	2	
13950	14000	－	－	．	－	－	\bigcirc	\bigcirc	－	－	－	－	2	1	－	2	
14000	14050	－	－	－	－	－	－	－	－	－	－	－	，	，	2	2	
14050	14100	－	－	－	。	－	－	－	－	－	－	。	2	－	2	2	

14150	14200	－1	－	－	－	－	0	－	0	0	－	－	2	1	2	－2	
14200	14250	${ }^{-1}$	0	。	0	。	0	－	0	0	－	－	2	－	－2	－2	
14250	14300	－1	。	－	－	－	0	－	0	0	－	0	－	－ 1	－	－2	
14300	14350	${ }^{-1}$	。	。	－	。	。	。	0	－	。	－	2	－	－2	－2	
14350	14400	${ }^{-1}$	－	0	－	－	0	－	0	－	－	－	2	－ 1	－2	－2	
14400	14450	－1	。	0	0	0	0	0	0	0	0	0	－	－1	－2	－2	
14450	14500	${ }_{-1}$	。	。	。	。	0	。	。	。	。	。	－2	－ 1	－2	-2	
14500	14550	${ }_{-1}$	－	－	。	－	0	。	－	－	。	0	2	－ 1	－2	-2	
14550	14600	－	。	。	。	。	－	。	。	。	。	。	2	－ 1	2	-2	
14600	14650	${ }_{-1}$	。	。	。	。	。	。	。	。	。	。	－2	－	－2	2	
14650	14700	－1	－	0	－	0	0	－	0	0	0	0	2	－ 1	－2	-2	
14700	14750	${ }^{-1}$	－	0	。	－	0	－	－	－	0	－	－	1	－2	－2	
14750	14800	${ }_{-1}$	。	－	。	。	。	。	。	。	－	－	2	－	－2	-2	
14800	14850	${ }_{-1}$	。	。	。	－	。	。	。	。	。	。	－2	－ 1	－2	-2	
14850	14900	${ }^{-1}$	${ }_{-1}$	。	。	－	。	。	。	。	。	。	－	－	－	-2	
14900	14950	－	。	－	。	0	0	－	－	0	。	。	2	－ 1	－2	－2	
14950	15000	${ }_{-1}$	。	－	0	－	0	－	－	－	－	－	－	－ 1	－2	－2	
15000	15050	${ }_{-1}$	。	。	。	。	。	。	。	－	。	。	－2	－	－2	-2	
15050	15100	－1	。	。	。	。	。	。	。	。	－	。	－ 2	－ 1	－2	2	
15100	15150	－1	。	－	。	。	0	。	。	0	。	。	－2	－ 1	-2	－2	
15150	15200	－	－	。	。	。	。	。	。	0	－	－	2	－ 1	－2	-2	
15200	15250	${ }^{-1}$	${ }^{-1}$	。	0	－	。	。	。	0	。	。	2	． 1	-2	-2	
15250	15300	${ }^{-1}$	－1	。	。	。	－1	2	。	0	。	。	－2	－	． 5	－	Structure over the Black Burn－ 200 m on potentially compressible ground combination of level difference and difficult construction access and some local disrupton
15300	15350	${ }^{-1}$	－ 1	。	－	－	－ 1	－2	－	。	。	。	－2	－ 1	． 5	－ 6	
15350	15400	${ }_{-1}$	－ 1	－	。	。	－ 1	－2	0	。	－	。	－	－1	－5	－	
15400	15450	${ }^{-1}$	${ }_{-1}$	。	。	。	－ 1	－2	。	－	。	。	－ 2	1	－	－	
15450	15500	${ }_{-1}$	${ }_{-1}$	。	。	。	。	－2	0	0	。	。	2	－ 1	4	6	
15500	15550	－	-1	。	。	。	。	。	。	。	。	。	2	1	2	-2	
15550	15600	${ }_{-1}$	${ }_{-1}$	－	。	－	0	。	。	0	－	。	－1	－	－1	－	
15600	15650	${ }^{-1}$	${ }^{-1}$	。	。	－	－	。	－	。	。	－	－	－	${ }^{-1}$	－-1	
15650	15700	${ }^{-1}$	－1	－	。	。	。	。	－	。	。	。	－	－ 1	－ 1	－	
15700	15750	${ }_{-1}$	${ }_{-1}$	。	0	。	。	。	。	0	。	。	－	－ 1	－1	－1	
15750	15800	${ }_{-1}$	${ }_{-}$	。	。	。	。	。	。	。	。	。	－ 1	． 1	${ }^{-1}$	-1	
15800	15850	${ }_{-1}$	－	。	。	。	。	。	。	。	。	0	－	－ 1	－	－1	
15850	15900	-1	－	。	－	－	－	－	－	－	－	。	－ 1	－1	－	－-1	
15900	15950	${ }^{-1}$	－	－	。	－	－	－	－	0	－	－	1	1	－1	－ 1	
15950	16000	${ }_{-1}$	0	。	。	。	0	。	。	0	。	。	－ 1	－	－	－1	
16000	16050	－1	－ 1	。	。	。	。	。	。	－	－	。	－ 1	－ 1	－1	-1	
16050	16100	${ }^{-1}$	－1	。	。	。	。	－	。	0	0	0	1	－ 1	－1	－1	
16100	16150	${ }_{-1}$	－ 1	－	0	－	－	－	0	0	0	－	1	${ }_{-1}$	－ 1	-1	
16150	16200	${ }^{-1}$	${ }^{-1}$	。	。	。	。	。	。	0	。	。	－ 1	1	－ 1	-1	
16200	16250	${ }_{-1}$	－1	。	。	。	。	。	。	。	。	。	1	－ 1	${ }^{-1}$	${ }_{-1}$	
16250	16300	-1	${ }_{-1}$	。	。	。	－	。	。	0	。	。	－ 1	－	-1	${ }_{-1}$	
16300	16350	${ }_{-1}$	-1	。	。	。	0	。	。	0	0	。	－ 1	－ 1	－1	－	
16350	16400	${ }_{-1}$	－1	。	。	。	0	。	。	0	0	。	－	－	－ 1	－ 1	
16400	16450	${ }_{-1}$	－ 1	。	。	。	。	。	。	。	。	。	1	－ 1	${ }_{-1}$	-1	
16450	16500	${ }_{-1}$	-1	。	－	－	－	－	－	－	。	－	－ 1	－	－1	－1	
16500	16550	${ }^{-1}$	${ }^{-1}$	－	－	。	0	－	。	。	－	－	－ 1	1	-1	－ 1	
16550	16600	${ }_{-1}$	-1	。	。	－	0	0	。	－	0	。	${ }_{-1}$	－ 1	－1	－1	
16600	16650	${ }^{-1}$	－1	。	0	0	0	－	0	0	－	。	－	－	－1	－1	
16650	16700	${ }_{-1}$	-1	。	。	。	。	。	。	0	。	。	－	1	${ }_{-1}$	-1	
16700	16750	${ }^{-1}$	-1	－	。	－	0	－	－	－	－	0	－	－	${ }_{-1}$	${ }^{-1}$	
16750	16800	${ }^{-1}$	－ 1	0	。	。	－	。	0	0	－	。	－1	－ 1	－1	－ 1	
16800	16850	${ }^{-1}$	－ 1	。	。	－	0	－	0	0	－	－	1	－	－1	-1	
16850	16900	${ }_{-1}$	-1	。	－	。	。	。	。	0	0	－	． 1	－ 1	${ }_{-1}$	-1	
16900	16950	${ }_{-1}$	－ 1	。	。	－	。	－	。	。	。	。	－ 1	－ 1	－-1	－ 1	
16950	17000	${ }^{-1}$	－1	。	。	。	－	。	。	。	0	。	－	－ 1	－1	－1	
17000	17050	${ }_{-1}$.$^{-1}$	。	。	。	。	。	。	。	。	。	－	－	－	－ 1	
17050	17100	${ }^{-1}$	－ 1	－	0	0	0	。	0	0	－ 1	。	－1	${ }^{-1}$	－	-2	
17100	17150																
17150	17200																

Rules
Total Score
$=$ Alignment Score（Average of $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ and I）＋Geo Score＋Structures Score＋Flooding Score（Average of L, M and N ）＋Utilities score＋Constructability Score（Minimum value of $\mathrm{P} \& \mathrm{Q})=$ Total of 6 scores for 6 categories

Then if total＜or equal to－9 then should be coloured red because this represents
possibility of 3 reds or 4 ambers
If total is between -6 and -8 should be coloured amber since this could represent 2

$\begin{aligned} & \text { ? } \\ & \text { ㄹ. } \\ & \text { B. } \\ & \text { oun } \end{aligned}$															$\begin{aligned} & n \\ & \frac{0}{\mathrm{~N}} \end{aligned}$		
					$\begin{aligned} & \text { 至 } \\ & \text { 恧 } \end{aligned}$						B B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			$\begin{aligned} & \overrightarrow{0} \\ & \frac{3}{3} \\ & \frac{0}{\bar{n}} \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \text {-1 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { 言 } \\ & \text { n } \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	
0	50	－ 1	－ 3	0	1	${ }^{-3}$	－ 2	0	0	0	－	0	－ 3	－	7	－7	
50	100	${ }_{-1}$	${ }^{-3}$	0	-1	${ }^{-3}$	－2	0	－	－	0	－	3	0	－7	7	
100	150	${ }_{-1}$	－	0	－ 1	${ }^{-3}$	－2	－	－	。	0	－	． 3	。	． 7	－ 7	
150	200	${ }^{-1}$	${ }^{-3}$	－	${ }^{-1}$	${ }^{3}$	2	。	。	。	。	。	${ }^{3}$	。	－7	－7	
200	250	${ }_{-1}$.$^{-}$	－	${ }_{-1}$	－3	－2	－	0	－	。	0	－3	。	${ }^{7}$	${ }^{-} 7$	
250	300	${ }_{-1}$	－2	。	${ }^{-1}$.3	${ }^{-1}$	。	－	。	。	0	${ }^{3}$	。	． 5	${ }^{-}$	
300	350	－ 1	－ 2	0	－ 1	${ }^{-3}$.$^{-1}$	0	－	。	0	0	． 3	。	． 5	－ 5	Cutites feater han 10 m through rock．Moora area－
350	400	${ }_{-1}$	-2	0	1	${ }^{3}$	${ }^{-1}$	。	0	－	。	0	－3	。	． 5	${ }_{5}$	
400	450	${ }_{-1}$	-2	－	${ }_{-1}$	${ }^{-3}$.1	。	0	－	。	\bigcirc	－3	。	． 5	－ 5	
450	500	${ }_{-1}$	－2	0	－ 1	${ }^{3}$	。	。	0	。	。	0	－ 3	。	4	4	Minor neuta leathworks．Dififut constuction access
500	550	－ 1	－ 1	0	－ 1	${ }^{-3}$	。	。	。	。	。	－	${ }^{3}$	。	4	4	Minor f netraleartwowns．Difficult construction
550	600	${ }_{-1}$	－ 1	0	－ 1	${ }^{-3}$	。	。	0	－	－	。	${ }^{-}$	。	4	4	Miner Reutra earthworks．Pifticu
600	650	${ }_{-1}$	－ 1	0	.1	${ }^{-3}$	。	。	0	。	。	。	－ 3	。	4	4	Minor／netral eartheors．Diffriult constuction access．
650	700	－ 1	－ 1	－	－	${ }^{-3}$	。	。	－	。	。	0	－ 3	。	4	4	Minor neutra eartworks．opiffutut constuction aceess．
700	750	${ }_{-1}$	－ 1	0	1	${ }^{-3}$	0	0	－	。	0	－	3	0	4	4	Minor／neutria earthwors．Difficut constuctio
750	800	${ }^{-1}$	${ }_{-1}$	。	${ }_{-1}$	－3	－	－	0	。	0	0	－ 3	。	4	4	Mnor I eutra eartwors． Oifficult construction
800	850	${ }_{-1}$	－ 1	－	${ }_{-1}$	${ }^{3}$	。	1	0	。	。	0	3	。	． 5	．	
850	900	${ }_{-1}$	－1	0	1	${ }^{-3}$	0	。	0	。	。	0	${ }^{-3}$	。	4	4	
900	950	${ }^{-1}$	－1	。	${ }^{-1}$	－ 3	。	。	。	。	－	－	.3	。	4	4	
950	1000	${ }_{-1}$	${ }_{-1}$	。	${ }_{-1}$	－3	。	。	0	。	。	。	－ 3	0	4	4	
1000	1050	${ }_{-1}$	－ 1	0	1	－3	。	0	0	－	。	。	3	。	4	4	Minor neutra eartworks．offifutut constuction acess．
1050	1100	－1	－ 1	0	－	${ }^{-3}$	。	0	0	。	。	0	－ 3	。	4	4	
1100	1150	－ 1	－1	－	${ }_{-1}$	${ }^{-3}$	。	。	－	。	－	。	${ }^{-}$	。	4	4	Minorf netrale eathwors．Difficult
1150	1200	－1	－ 1	0	1	${ }^{-3}$	。	0	－	。	0	0	3	。	4	4	Minor／neutral earthworks．Difficult construction access． Overall high earthworks volumes
1200	1250	－ 1	－ 1	0	1	${ }^{-3}$	。	0	0	。	。	0	${ }^{-3}$	。	4	4	Minor neutra eartworks．opiffutut constuction aceess．
1250	1300	${ }_{-1}$	－ 1	－	${ }_{-1}$	－3	。	。	0	。	。	。	${ }^{3}$	。	4	4	
1300	1350	－ 1	－ 1	0	1	${ }^{-3}$	－	。	0	。	。	－	－ 3	。	4	4	
1350	1400	${ }_{-1}$	。	0	1	${ }^{-3}$	。	0	－	。	。	－	－ 3	。	4	4	
1400	1450	${ }_{-1}$	0	0	－	.$^{-3}$	0	－	－	－	0	0	${ }^{-3}$	。	4	4	
1450	1500	${ }_{-1}$	－ 1	。	${ }_{-1}$	${ }^{-3}$	。	。	0	。	－	。	－ 3	。	4	4	Minorf netralearthwors．Difficult
1500	1550	${ }_{-1}$	－ 1	0	1	${ }^{-3}$	－	0	0	－	。	0	${ }^{-3}$	。	4	4	Minor neutra eartworks．Difficut constuction acess．
1550	1600	${ }_{-1}$	－ 2	0	-1	${ }^{3}$	-1	。	－	－	－	－	${ }^{3}$	。	．	． 5	
1600	1650	－1	－2	0	${ }_{-1}$	${ }^{-3}$	${ }_{-1}$	－	0	－	－	－	－ 3	。	． 5	． 5	
1650	1700	${ }^{-1}$	－2	－	－ 1	${ }^{3}$	${ }_{-1}$	。	0	。	。	0	－ 3	。	． 5	． 5	
1700	1750	－ 1	－1	0	1	－ 3	。	0	0	。	。	。	3	。	4	4	
1750	1800	${ }_{-1}$	－1	0	－ 1	${ }^{-3}$	－	。	－	－	－	0	－ 2	。	${ }^{-3}$	${ }^{-}$	
1800	1850	${ }^{-1}$	0	0	1	${ }^{-3}$	0	。	－	。	0	0	－2	。	－	${ }^{-3}$	
1850	1900	－ 1	－1	0	${ }_{1}$	－ 3	－	。	0	－	－	。	－2	。	－3	${ }_{3}$	
1900	1950	${ }^{-1}$	－1	0	－1	－ 3	－	。	－	。	－	0	2	。	${ }^{3}$	${ }^{-3}$	
1950	2000	${ }_{-1}$	-1	0	.$^{-1}$.$^{-3}$	。	。	0	－	0	0	－2	0	${ }^{-3}$	${ }_{3}$	
2000	2050	${ }_{-1}$	-1	。	${ }^{-1}$	${ }^{-3}$	0	－	0	。	0	－	－ 2	。	－3	${ }_{3}$	
2050	2100	－1	－ 1	0	－	.$^{-3}$	0	\bigcirc	0	－	0	0	－ 2	。	3	－ 3	Eataty
2100	2150	${ }_{-1}$	-1	0	－	${ }^{-3}$	。	0	0	。	0	0	－2	。	${ }^{-3}$	${ }^{-3}$	
2150	2200	${ }^{-1}$	－-1	0	－ 1	${ }^{-3}$	0	\bigcirc	0	。	0	0	－ 2	0	$\cdot 3$	${ }^{-3}$	Eataty
2200	2250	${ }_{-1}$	${ }^{-1}$	0	-1	${ }^{-3}$	0	0	－	－	－	。	－2	。	${ }^{3}$	${ }^{3}$	
2250	2300	${ }^{-1}$	－ 1	。	－ 1	${ }^{-3}$	。	－	0	。	0	0	－ 2	。	－ 3	${ }^{-3}$	
2300	2350	－ 1	－ 1	0	-1	－3	0	0	0	。	。	0	－2	。	${ }^{-3}$.3	
2350	2400	－ 1	${ }^{-1}$	－	1	${ }^{-3}$	－	0	－	。	。	－	－ 2	。	${ }^{-}$	${ }^{-3}$	
2400	2450	${ }_{-1}$	－ 1	0	－	－ 3	0	0	0	0	0	0	－ 2	。	${ }^{-3}$	${ }^{-3}$	
2450	2500	${ }_{-1}$	－ 1	0	-1	${ }^{-3}$	。	0	0	。	0	0	－2	。	${ }^{-3}$	${ }^{-3}$	
2500	2550	1	${ }^{-1}$	0	－	${ }^{-3}$	0	0	0	0	0	0	－ 2	。	－	${ }^{-3}$	
2550	2600	－1	－ 1	0	－ 1	${ }^{3}$	0	－	。	0	0	－	－	。	${ }^{3}$	${ }^{3}$	
2600	2650	－1	－	0	－ 1	－ 3	。	0	0	0	0	0	－ 2	。	－	－ 3	
2650	2700	${ }_{-1}$	0	0	－ 1	${ }^{-3}$	0	0	－	0	0	0	2	0	$\cdot 3$	${ }^{-3}$	
2700	2750	－1	0	0	－	${ }^{-3}$	0	0	0	0	0	0	－	0	3	.3	
2750	2800	${ }_{-1}$	－1	0	－ 1	${ }^{3}$	0	0	0	0	0	0	－ 2	0	.3	－3	
2800	2850	${ }^{-1}$	${ }^{-1}$	0	－1	${ }^{-3}$	0	0	0	0	0	－	－ 2	0	－ 3	${ }^{-3}$	
2850	2900	－ 1	－ 1	0	-1	${ }^{-3}$	。	0	0	0	0	－	－ 2	0	－	${ }^{-3}$	
2900	2950	－1	－1	0	1	${ }^{-3}$	0	\bigcirc	－	0	0	0	2	0	${ }^{-3}$.3	
2950	3000	${ }_{-1}$	-1	0	-1	－3	－	－	0	－	－	－	－ 2	。	－ 3	${ }_{-3}$	
3000	3050	－ 1	－ 1	－	－	${ }^{-3}$	0	0	。	0	0	．	－2	0	3	.3	Eatat
3050	3100	－ 1	－ 1	0	－	${ }^{-3}$	0	0	0	0	0	0	－2	0	-3	${ }^{-3}$	Earthwors under Iom．Overal hip easthworts vol
3100	3150	－1	${ }^{-1}$	0	-1	${ }^{-3}$	0	0	－	0	0	0	-2	。	$\cdot 3$	${ }^{3}$	Etarte
3150	3200	－ 1	${ }^{-1}$	0	－	${ }^{-3}$	0	0	0	0	0	0	－ 2	。	－ 3	${ }^{-3}$	
3200	3250			。			。				。						

3250	3300	－1	－1	0	－1	${ }^{-3}$	0	0	0	0	0	0	－2	0	.3	－ 3	Earthworks under 10 m ．Overall high earthworks volumes． Moderate adverse construction access
3300	3350	－ 1	－1	0	1	${ }^{-3}$	0	0	0	0	0	0	－2	。	${ }^{-3}$	－3	Earthworks under 10 m ．Overall high earthworks volumes． Modrate adverse construction acces
3350	3400	－ 1	－1	。	${ }_{-1}$	${ }^{-3}$	。	${ }_{-3}$	。	。	。	。	－2	。	${ }^{6}$	．	New bridge over river urie and flood plain．Total length 450m．Score adjusted to reflect geotechnical engineering to support structure
3400	3450	－	－-1	。	－	${ }^{-3}$	。	${ }_{-3}$	。	。	。	。	－2	。	${ }^{-6}$	．	New bridge over river urie and flood plain．Total length 450 m ．Score adjusted to reflect geotechnical engineering to support structure
3450	3500	${ }_{-1}$	－2	。	${ }_{-1}$	－3	${ }_{-1}$	${ }_{-3}$	。	。	。	。	－2	。	－ 7	．	New bridge over river urie and flood plain．Total length 450m
3500	3550	${ }_{-1}$	－2	。	－ 1	${ }^{-3}$	2	－ 3	－	。	0	0	－2	0	8	－	New bridge over river urie and flood plain．Total length 450 m
3550	3600	${ }_{-1}$	－2	－	${ }_{-1}$	－3	－2	${ }_{-3}$	。	。	。	。	－2	。	． 8	． 9	New bridge over river urie and flood plain．Total length 450m
3600	3650	${ }_{-1}$	${ }_{-3}$	。	－1	${ }^{3}$	${ }^{3}$	${ }^{-3}$	。	。	2	。	－2	0	－10	10	New bridge over river urie and flood plain．Total length 450 m
3650	3700	${ }_{-1}$	${ }^{-3}$	0	－1	${ }^{-3}$	－ 3	－ 3	0	0	0	－	－2	。	－ 10	． 10	New bridge over river urie and flood plain．Total length 450 m
3700	3750	－ 1	${ }^{-3}$	0	－	－3	-2	－3	0	0	0	。	－2	0	－9	－9	New bridge over river urie and flood plain．Total length 450m
3750	3800	－1	－2	。	－ 1	－ 3	－	－ 3	0	0	－	。	。	${ }_{-1}$	． 5	． 9	New bridge over river urie and flood plain．Total length 450 m ．Score adjusted to reflect geotechnical engineering to support structure
3800	3850	－1	${ }^{-1}$	。	－1	－3	。	－ 3	0	0	0	。	。	－	－ 5	－	New bridge over river urie and flood plain．Total length 450 m ．Score adjusted to reflect geotechnical engineering to support structure support structure
3850	3900	－ 1	。	0	－1	－ 3	。	。	0	。	。	。	0	${ }_{-1}$	－ 2	-2	Minor disruption to users at tie in point．Considered viable
3900	3950	－1	。	0	－1	－ 3	。	0	0	。	。	－1	0	－1	${ }_{3}$	${ }^{-}$	Minor disruption to users at tie in point．Considered viable to manage connection without excessive disruption．Traffic scotland assets present
3950	4000	${ }_{-1}$	－	。	${ }_{-1}$	${ }^{-3}$	。	。	－	－	－	0	。	－ 1	－2	－2	Minor disruption to users at tie in point．Considered viable to manage connection without excessive disruption
4000	4050	－1	0	。	－ 1	${ }^{-3}$	。	。	0	。	。	。	。	${ }_{-1}$	－2	-2	Minor disruption to users at tie in point．Considered viable to manage connection without excessive disruption
4050	4100																

$=$ Alignment Score（Average of $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ and 1）+ Geo Score + Structures Score＋Flooding Score（Average of L, M and N ）＋Utilities score＋Constructability Score（Minimum value of $\mathrm{P} \mathrm{\& Q}$ ）$=$ Total of 6 scores for 6 categories

Then if total＜or equal to－9 then should be coloured red because this represents
possibility of 3 reds or 4 ambers
If total is between -6 and -8 should be
coloured amber since this could represent

															$\begin{aligned} & n \\ & \hat{0} \\ & \text { on } \end{aligned}$		
				$\begin{aligned} & \text { op } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\mid c} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	$\begin{aligned} & \text { 至 } \\ & \text { 説 } \\ & \text { W } \end{aligned}$										$\begin{aligned} & \text {-1 } \\ & \text { ※ } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { 른 } \\ & \text { n } \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 3 \\ & \frac{1}{i} \end{aligned}$
0	50	－	－1	－2	－	${ }^{-3}$	${ }^{-3}$	。	0	0	－	0	－ 3	0	－	－	
50	100	。	${ }_{-1}$	－2	。	${ }^{-3}$	${ }^{3}$	。	。	。	。	。	． 3	。	－ 7	\rightarrow	
100	150	。	－1	－ 2	。	${ }^{-3}$	${ }^{-3}$	。	0	。	。	。	－3	。	${ }^{7}$	7	Cocting hrout peat up to 7 d deep．．Offlcult constrution
150	200	。	－ 1	-2	。	－ 3	－	0	－	0	0	。	${ }^{-3}$	。	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
200	250	0	－ 1	－	。	－ 3	0	0	－	0	0	。	.3	。	4	4	Cuttings and embankments through／upon rock Alignment subject to high earthworks volumes．Difficult construction access
250	300	。	${ }_{-1}$	－	。	－ 3	。	。	。	。	0	。	3	。	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
300	350	0	－ 1	－	。	－ 3	0	－	0	0	0	。	3	。	． 5	． 5	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
350	400	。	－ 1	－	。	－ 3	0	。	0	0	0	。	3	。	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
400	450	。	－ 1	－ 2	。	－ 3	－	0	0	。	0	－	3	0	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult Alignment subject to
450	500	0	－ 1	－	0	－ 3	0	0	0	0	0	0	－ 3	0	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
500	550	。	－1	-2	。	－ 3	。	。	。	。	。	。	${ }^{3}$	。	${ }_{4}$	4	Cuttings and embankments through／upon rock． Alignment subject to construction access
550	600	0	－ 1	－2	0	3	0	0	－	。	0	。	${ }_{3}$	。	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
600	650	。	－1	－	。	－ 3	0	。	。	0	0	。	${ }^{3}$	。	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
650	700	0	－ 1	－ 2	0	3	－	0	0	0	0	0	3	0	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
700	750	0	。	－2	0	－	0	0	0	0	0	0	－ 3	0	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
750	800	。	。	-2	。	－ 3	0	。	0	0	0	。	－3	。	4	4	Cuttings and embankments through／upon rock Alignment subject to high earthworks volumes．Difficult construction access
800	850	0	－ 1	-2	0	－ 3	0	0	0	0	0	。	${ }_{3}$	。	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult Alignment subject to construction access
850	900	。	－1	${ }_{-2}$	。	－3	。	。	。	。	。	。	${ }_{3}$	。	4	4	Cuttings and embankments through／upon rock． Alignment subject to high earthworks volumes．Difficult construction access
900	950	。	－1	－ 2	。	－ 3	－1	。	。	。	。	。	${ }^{3}$	。	． 5	－5	
950	1000	。	－2	－2	。	－ 3	${ }^{-1}$	。	－	－	。	。	${ }^{3}$	。	． 5	． 5	
1000	1050	。	－2	-2	。	${ }^{-3}$	${ }^{-1}$	。	。	。	。	。	－ 3	。	．	． 5	
1050	1100	。	－2	－2	。	${ }^{-3}$	2	－	－	。	－	－	－ 3	。	－	－	
1100	1150	。	－2	$\cdot 2$	。	${ }^{-3}$.$^{-1}$	。	。	。	。	－	${ }^{3}$	。	． 5	． 5	
1150	1200	。	－2	－2	。	${ }^{-3}$	1	。	－	。	0	。	${ }^{3}$	。	． 5	－ 5	
1200	1250	。	－2	－2	。	${ }^{-3}$	。	。	。	。	。	。	${ }^{3}$	。	4	4	Low Le
1250	1300	。	${ }_{-1}$	-2	。	-3	。	。	。	。	。	0	-3	0	4	4	
1300	1350	。	－	${ }_{-2}$	。	${ }^{3}$	。	－	。	。	。	。	${ }^{3}$	。	4	4	
1350	1400	。	${ }_{-1}$	-2	。	－ 3	。	。	。	。	。	。	${ }^{3}$	。	4	4	
1400	1450	。	－1	-2	。	－ 3	。	。	。	。	。	。	－ 3	0	4	4	
1450	1500	－	-1	-2	。	${ }^{-3}$.$_{1}$	。	。	。	。	。	${ }^{3}$	。	．	． 5	
1500	1550	－	－2	－2	。	${ }^{3}$	${ }_{-1}$	。	。	。	。	。	${ }^{3}$	。	． 5	${ }^{5}$	
1550	1600	。	-2	-2	。	${ }^{-3}$	${ }_{-1}$	。	。	。	。	。	3	。	． 5	． 5	
1600	1650	。	－2	-2	。	－3	。	。	。	。	。	。	－ 3	。	4	4	
1650	1700	。	－1	-2	。	.3	。	－	。	。	。	。	3	。	4	4	
1700	1750	。	${ }_{-1}$	－2	。	${ }^{-3}$	。	。	－	。	。	。	${ }^{-3}$	0	4	4	
1750	1800	。	－1	－2	。	－ 3	。	0	。	。	0	。	${ }^{3}$	0	${ }_{4}$	4	
1800	1850	－	－ 1	-2	－	－ 3	－	－	。	。	。	。	${ }^{3}$	。	4	4	Low Cutioss／embankents upon rockl／unkown
1850	1900	0	－1	－2	0	－ 3	0	0	。	。	。	。	3	。	4	4	Low Cutioss／embankents upon rockl／unkown
1900	1950	。	-1	2	。	${ }^{3}$	。	0	。	。	。	。	－ 3	。	4	4	Low Cutioss／embankents upon rockl／unkown
1950	2000	。	。	-2	。	－ 3	。	。	。	。	－	0	3	0	4	4	
2000	2050	。	0	-2	。	${ }^{-3}$	0	。	。	。	0	。	${ }^{3}$	。	4	4	Low Cutioss／embankents upon rockl／unkown
2050	2100	。	－ 1	－	0	${ }^{-3}$	0	0	。	0	0	。	－ 3	。	4	4	
2100	2150	。	-1	-2	。	－	。	0	。	。	0	。	－3	。	4	4	
2150	2200	。	0	-2	0	${ }^{-3}$	。	0	0	。	0	。	${ }^{3}$	。	4	4	
2200	2250	。	0	-2	。	－ 3	。	0	。	。	0	。	${ }^{3}$	。	4	4	
2250	2300	。	。	-2	。	${ }^{3}$	。	。	－	。	。	－	3	。	4	4	Low Cutioss／embankents upon rockl／unkown
2300	2350	。	${ }_{-1}$	-2	。	-3	。	。	。	。	0	。	－ 3	0	4	4	
2350	2400	。	－1	-2	。	－	0	0	。	。	0	。	－ 3	。	4	4	
2400	2450	。	－1	-2	0	－ 3	0	0	0	0	0	。	3	。	4	4	
2450	2500	。	-1	－	。	－ 3	0	0	。	。	0	。	－ 3	。	4	4	Low Cutioss／embankments upon rock／unkown
2500	2550	。	－1	-2	0	3	0	0	0	0	0	。	${ }^{3}$	。	4	4	
2550	2600	。	－1	-2	。	${ }^{-3}$	。	0	。	。	0	。	－ 3	。	4	4	
2600	2650	。	0	-2	0	－ 3	0	0	。	。	0	。	${ }^{3}$	。	4	4	
2650	2700	。	。	-2	。	${ }^{-3}$	。	。	。	。	。	。	－3	。	4	4	Lew
2700	2750	。	。	－2	。	${ }^{3}$	。	．	。	。	。	。	${ }^{3}$	。	4	4	
2750	2800	0	0	－2	0	－ 3	0	0	0	0	0	0	－	0	4	4	Low Cutioss／embankents woon rockl／unkown
2800	2850				。		。	。	。	。		。		。	4		Low Cutioss／embankments upon rock／unkown

2850	2900	0	－ 1	-2	0	${ }^{-3}$	0	－ 3	0	0	0	0	3	0	－7	． 9	New bridge over river urie and flood plain．Total length 650 m ．Score adjusted to reflect geotechnical engineering for structure
2900	2950																New bridge over river urie and flood plain．Total length 650 m ．Score adjusted to reflect geotechnical engineering
		0	－1	－2	0	－3	${ }^{1}$	3	0	0	0	0	3	0	8	－9	
2950	3000	0	2	－2	0	－ 3	－2	${ }^{-3}$	0	0	0	0	3	0	9	－	
3000	3050	。	－2	－2	0	－ 3	－2	${ }^{-3}$	0	0	0	。	3	0	，	－	${ }_{\text {a }} \begin{aligned} & \text { Nee bridge ever river urie and flood plain．Total len } \\ & \text { 650m }\end{aligned}$
3050	3100	0	${ }^{-3}$	－2	0	${ }^{-3}$	${ }^{-3}$	-3	0	0	0	0	3	0	11	11	${ }^{\text {New bem bidge o ver river urie and flood plin．Totaller }}$
3100	3150	0	－ 3	－2	0	${ }^{-3}$	－3	－ 3	0	0	0	0	3	0	11	11	${ }_{\text {L }} \mathrm{New}$ bridge ever river urie and flood plain．Total lene
3150	3200	0	－ 3	－2	0	－3	－3	－ 3	0	0	0	0	3	0	11	－11	${ }^{\text {Natew bridge ever river urie and flood plain．Total length }}$
3200	3250	0	－3	－2	0	－3	－ 3	${ }^{-3}$	0	0	0	0	3	0	11	11	${ }^{\text {NSOw bridge over river urie and flood plain．Total length }}$
3250	3300	0	－3	－2	0	－3	－ 3	${ }^{-3}$	0	0	0	0	0	1	．	． 9	
3300	3350	0	－ 3	－2	0	－3	－3	${ }^{-3}$	0	0	0	0	0	1	－	－9	${ }_{5} \mathrm{~N} 5 \mathrm{~m}$ bridge ever river urie and flood plain．Total length
3350	3400	。	－ 3	－2	0	${ }^{-3}$	－2	－3	0	0	。	。	0	1	8	－ 9	New bridge over river urie and flood plain．Total length 650 m ．Score adjusted to reflect geotechnical engineering for structure
3400	3450	。	－2	－2	0	－3	－ 1	${ }^{-3}$	0	0	0	0	0	1	6	－	New bridge over river urie and flood plain．Total length 650 m ．Score adjusted to reflect geotechnical engineering for structure
3450	3500	0	－2	－2	0	－3	0	－ 3	0	0	0	。	。	－	5	．	New bridge over river urie and flood plain．Total length 650 m ．Score adjusted to reflect geotechnical engineering for structure
3500	3550	。	－	－2	0	－3	0	${ }_{-3}$	0	0	0	0	0	－	． 5	9	New bridge over river urie and flood plain．Total length 650 m ．Score adjusted to reflect geotechnical engineering for structure
3550	3600	0	0	－2	0	－3	0	0	0	0	0	0	0	1	－2	－2	Teie in with A96
3600	3650	1	－ 3	0	－1	－ 3	－ 3	${ }^{-3}$	0	0	－ 2	0	2	0	10	10	${ }^{\text {New bridge ever river urie and flood plain．Total length }}$
3650	3700	－1	－ 3	0	－ 1	${ }^{-3}$	${ }^{-3}$	${ }^{-3}$	0	0	0	0	2	0	10	10	${ }^{\text {New bridge ever river urie and flood plain．Total length }}$
3700	3750	－1	${ }^{-3}$	0	${ }^{-1}$	－3	－2	${ }^{-3}$	0	0	0	0	2	0	－	－	${ }^{\text {New bridge e over river urie and flood plain．Total length }}$
3750	3800	${ }^{-1}$	－2	0	－ 1	－3	0	－ 3	0	0	0	0	0	1	． 5	－9	dew bidge over river urie and flood plain．Total length 450 m ．Score adjusted to reflect geotechnical engineering support structure
3800	3850	－1	－1	。	－	－3	。	${ }^{-3}$	。	0	。	。	0	－1	． 5	．	New bridge over river urie and flood plain．Total length 450 m ．Score adjusted to reflect geotechnical engineering to support structure
3850	3900	－ 1	。	。	${ }_{-1}$	－3	。	－	。	0	。	。	0	1	－ 2	－2	
3900	3950	－	。	。	－	－3	。	。	。	。	。	－1	0	－1	${ }^{-3}$	${ }^{-3}$	Minor disruption to users at tie in point．Considered viable to manage connection without excessive disruption．Traffic scotland assets present
3950	4000	－ 1	0	－	－ 1	${ }^{-3}$	0	－	－	0	0	0	。	1	－2	－2	Minor disuption tousers at tie in point Considered vible
4000	4050	－ 1	0	0	－ 1	－3	0	0	0	0	0	0	0	1	－2	－2	Minor disuption tousers at tiei in point Considered viable
4050	4100																earthworks／m Difficult construction access
4100	4150																Cuttings up to 30.2 m high in rock tion of level difference，hilliness，bendiness and earthworks／m Difficult construction access
4150	4200																
4200	4250																

Rules
 Total Score

＝Alignment Score（Average of E，F，G，H and 1）+ Geo Score + Structures Score + Floodin Score（Average of L, M and N ）＋Utilities score＋Constructability Score（Minimum value of $P \& Q)=$ Total of 6 scores for 6 categories

Then if total＜or equal to－ 9 then should be coloured red because this represents
possibility of 3 reds or 4 ambers
If total is between -6 and -8 should be
coloured amber since this could represent 2

															$\begin{aligned} & n \\ & \hat{0} \\ & \end{aligned}$		
				$\begin{aligned} & \text { op } \\ & 0 \\ & \stackrel{0}{3} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 플 } \\ & \text { 認 } \\ & \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{亏} \end{aligned}$		$\begin{array}{\|l} \frac{7}{\circ} \\ 0 . \\ \frac{0}{0} \\ \end{array}$					$\begin{aligned} & \overrightarrow{0} \\ & \frac{3}{3} \\ & \frac{0}{\bar{n}} \\ & \frac{0}{0} \\ & 0 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text {-1 } \\ & \text { O } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & 3 \\ & \frac{1}{i} \end{aligned}$
0	50	－	－	－2	－2	－	0	0	0	0	。	0	－2	－ 2	${ }^{3}$	${ }^{-3}$	Moderte elliness bendiness Low earthworks volumes．
50	100	。	。	-2	－2	0	。	。	。	0	。	－	－	2	${ }_{3}$	${ }_{3}$	
100	150	。	－1	－2	－2	0	0	0	－	0	。	。	－2	2	－3	${ }^{-}$	
150	200	。	。	－2	－2	－	。	。	。	0	。	。	－2	2	${ }_{3}$	${ }^{-3}$	Moderate illines Sendiness．Low earthworks volumes．
200	250	。	－	－2	－2	－	。	。	。	0	。	0	－ 2	2	${ }^{-3}$	－3	
250	300	。	－	${ }_{-2}$	－2	0	－	－	－	。	。	。	－2	2	${ }^{3}$	${ }_{3}$	
300	350	。	－	－2	－2	0	。	0	。	0	。	0	－	2	－3	－3	Moderate eiliness endiness．Low earthworks volumes．
350	400	。	。	-2	－2	。	。	。	。	0	。	。	－2	2	${ }^{3}$	－3	
400	450	。	。	-2	－2	－	。	。	。	0	。	－	－2	2	\cdots	－3	Moderate ilileses endiniess．Low earthworks volumes．
450	500	。	－	－2	－2	－	。	。	－	－	。	0	－2	2	${ }_{3}$	${ }_{3}$	
500	550	。	0	-2	－2	0	。	0	。	0	0	。	－2	2	－3	－ 3	Moderate eillieses eendiness Low earthwork volumes． Moderate cceess
550	600	。	。	－2	－2	－	－	。	－	0	－	－	－2	2	${ }^{-3}$	－ 3	Moderate ililiess endiniess．Low easthworks volumes．
600	650	。	－1	－2	－2	。	。	。	。	。	。	。	－2	2	－ 3	${ }^{3}$	
650	700	。	${ }_{-1}$	${ }_{-2}$	－2	0	。	。	0	。	。	0	－ 2	－2	${ }_{-3}$	${ }^{3}$	
700	750	。	－1	-2	－2	\bigcirc	。	0	。	0	。	0	－2	2	${ }^{-3}$	－3	Moderate illines Bendiness．Low earthworks volumes．
750	800	。	－1	－2	－2	0	0	0	。	0	。	0	－2	2	${ }^{-3}$	－3	Moderate silines Sendiness．Low earthworks volumes．
800	850	。	－	-2	－2	－	。	。	－	。	。	0	－2	2	－3	－3	
850	900	。	${ }_{-1}$	${ }_{-2}$	－2	－	。	。	－	。	。	－	-2	－2	${ }_{3}$	${ }^{3}$	
900	950	。	-1	-2	-2	0	－	－ 1	－	0	－	0	－2	2	4	4	New under idge ver Mill burn and local rasd，lengh
950	1000	。	-1	-2	－2	0	1	－1	0	0	。	0	－2	2	－ 5	－ 5	New underidge ver mill bur nand local rasd，lergth
1000	1050	。	－2	－2	－2	－	－	－1	。	。	。	0	－2	2	4	4	New underidige ove Mill burn and local road，length
1050	1100	。	${ }_{-1}$	-2	－2	－	。	－ 1	。	。	。	。	-2	2	4	4	
1100	1150	。	。	-2	-2	\bigcirc	。	0	－	0	。	0	－2	－2	－3	－3	
1150	1200	。	－ 1	-2	－2	0	。	0	－	0	。	0	－2	2	－ 3	－ 3	Moderate silines Sendiness．Low earthworks volumes．
1200	1250	。	－1	－2	－2	－	－	。	－	－	－	0	－2	2	${ }^{-3}$	${ }^{-3}$	
1250	1300	。	${ }_{-1}$	-2	－2	。	－	－	。	。	。	－	－2	－2	${ }_{3}$	－ 3	
1300	1350	。	－1	-2	－2	\bigcirc	-1	。	。	0	。	－	－	2	4	4	Cuttings up to 14 m through unknown ground．Moderate access
1350	1400	。	－2	-2	－2	0	1	0	－	0	0	0	－2	2	4	4	
1400	1450	。	－ 2	-2	－2	0	1	。	－	。	0	0	－ 2	－2	4	4	
1450	1500	。	-2	－2	-2	－	${ }_{-1}$	。	－	。	。	－	－2	2	4	4	Cuttings up to 14 m through unknown ground．Moderate access
1500	1550	。	-2	－2	－2	－	1	。	－	0	。	－	－2	2	4	4	Cutirins up to $14 \mathrm{mmtrough} \mathrm{unknown} \mathrm{ground}$.
1550	1600	。	－2	－2	－2	－	－1	。	－	。	。	。	－2	－2	4	4	
1600	1650	。	－1	－2	2	－	。	。	－	－	。	0	－2	－2	${ }^{-3}$	${ }_{-3}$	Moderate eiliness endiniess．Low earthworks volumes．
1650	1700	。	－ 1	－2	－2	。	。	。	－	。	。	－	－2	－ 2	${ }^{-3}$	${ }^{-3}$	
1700	1750	。	－1	－2	-2	－	。	。	。	0	。	。	－2	2	${ }^{-3}$	－ 3	Moderate eillieses eendiness Low earthwork volumes． Moderate cceess
1750	1800	。	。	－2	－2	0	。	。	－	－	。	0	－ 2	－2	－3	－ 3	Moderate siliness bendiness．Low earthworks volumes．
1800	1850	。	－	${ }_{-2}$	－2	。	－	。	－	－	。	－	－ 2	－2	${ }^{-3}$	－ 3	
1850	1900	。	。	${ }_{-2}$	－2	。	。	。	。	。	。	0	－ 2	－	${ }^{-3}$	${ }^{-3}$	
1900	1950	。	。	-2	－2	。	。	。	。	0	。	－	－2	2	${ }^{3}$	－ 3	Moderate illines Bendiness．Low earthworks volumes．
1950	2000	。	－	-2	$\cdot 2$	0	0	。	－	－	－	－	－2	2	${ }^{-3}$	${ }_{-3}$	
2000	2050	。	－1	-2	－2	－	。	。	－	0	。	。	－2	2	－ 3	－3	
2050	2100	0	－	-2	-2	0	0	0	。	0	。	。	－	－2	${ }^{-3}$	${ }^{-3}$	
2100	2150	0	－ 1	-2	－	－	0	－ 3	0	－	0	0	－2	－2	－	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2150	2200	0	－ 1	-2	-2	0	0	${ }^{-3}$	0	0	0	0	－2	－ 2	6	9	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2200	2250	0	－ 1	-2	-2	－	0	${ }^{-3}$	0	0	0	0	－2	－ 2	－	\rightarrow	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2250	2300	。	－1	－2	－2	。	。	${ }_{3}$	。	．	0	。	－2	－ 2	${ }^{6}$	9	plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2300	2350	0	－ 1	-2	-2	－	0	${ }^{3}$	0	0	0	0	－2	－ 2	－	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2350	2400	0	－1	-2	-2	0	0	${ }^{-3}$	0	0	0	0	－2	－	－	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2400	2450	0	－2	-2	－	－	－ 1	－3	－	0	0	0	－2	2	－ 7	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2450	2500	0	－2	-2	-2	0	－ 1	－3	0	0	0	0	－2	－2	$\rightarrow 7$	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2500	2550	0	－ 1	-2	-2	0	0	－ 3	0	0	0	0	－2	－ 2	－	\rightarrow	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2550	2600	0	－ 1	-2	－ 2	0	0	${ }^{-3}$	0	0	0	0	－2	－ 2	－	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2600	2650					。		${ }_{-3}$		0	0						New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．

2650	2700	0	－2	－2	－2	0	－ 1	${ }^{-3}$	0	0	0	0	2	2	－ 7	－ 9	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2700	2750	。	－2	－2	－2	。	－2	－3	。	。	。	0	2	－2	－	－ 9	plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2750	2800	。	－2	－2	－2	。	－2	－3	。	。	。	0	2	－2	－	－ 9	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2800	2850	。	－2	－2	－2	。	－2	${ }_{-3}$	。	。	。	。	。	． 2	${ }_{-8}$	－ 9	
2850	2900	。	－2	－2	－2	。	。	－ 3	。	。	。	。	。	． 2	－ 6	． 9	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2900	2950	。	－1	－2	－2	。	。	－ 3	。	。	。	。	。	－2	${ }^{6}$	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 800 m ．Score adjusted to reflect geotechnical works associated with structure．
2950	3000	。	－	－2	－2	－	－	0	－	－	－	。	。	2	${ }^{-3}$.$^{-3}$	
3000	3050	0	0	－2	－2	0	0	0	0	0	0	0	0	2	${ }^{-3}$	－3	Etarthworks clom to tie in w with A96．Moderate dissuption
3050	3100	。	－	－2	－2	－	0	0	－	－	－	0	。	2	${ }^{-3}$	－ 3	Etarthworts clom to tie in w with A96．Moderate dissuption
3100	3150	0	－1	－2	－2	0	0	0	0	0	0	0	0	2	－3	－3	Etarthworts clom to tie in w with A96．Moderate dissuption
3150	3200	0	－1	－2	－2	0	0	0	0	0	0	0	0	－ 2	－ 3	－ 3	Etarthworts clom to tie in with A96．Moderate disuppion
3200	3250	0	0	－2	－2	0	0	0	0	0	0	0	0	－ 2	－3	－3	Elarthworks clom to tie in with A96．Moderate disuption
3250	3300																
3300	3350																

Rules
 Total Score

＝Alignment Score（Average of E，F，G，H and 1）+ Geo Score＋Structures Score＋Flooding Score（Average of L, M and N ）＋Utilities score＋Constructability Score（Minimum value of $\mathrm{P} \& \mathrm{Q})=$ Total of 6 scores for 6 categories

Then if total＜or equal to－9 then should be coloured red because this represents possibility of 3 reds or 4 ambers
If total is between -6 and -8 should be coloured amber since this could represent 2

															$\begin{aligned} & n \\ & \frac{0}{0} \end{aligned}$		
											Attenuation requirement			$\begin{aligned} & \overrightarrow{0} \\ & \frac{3}{3} \\ & \frac{0}{n} \\ & \frac{0}{2} \\ & \frac{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text {-1 } \\ & \underset{\sim}{\mathbf{0}} \end{aligned}$		$\begin{aligned} & 0 \\ & \frac{0}{3} \\ & 3 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
0	50	。	－1	－2	－1	${ }^{-3}$	－	－	0	\bigcirc	0	0	－3	。	4	4	Difficult construction access．Route wide high earthworks volume
50	100	。	－	${ }_{-2}$	${ }^{-1}$	－ 3	－	0	－	0	－	0	${ }^{3}$	。	4	4	
100	150	。	${ }_{-1}$	-2	． 1	－ 3	。	－	0	0	－	0	． 3	0	${ }_{4}$	4	Pital
150	200	。	-2	－2	－ 1	${ }^{-3}$	－ 1	。	－	。	。	－	${ }^{3}$	。	－	－	
200	250	。	-2	-2	－ 1	${ }^{-3}$	－ 1	0	。	。	。	－	3	0	． 6	${ }_{6}$	Cutrins 10.17 m throregh rock．Difficult access
250	300	。	－2	－2	－ 1	－3	${ }_{-1}$	。	。	0	。	－	－ 3	。	． 6	－	
300	350	－	－2	-2	－ 1	${ }^{-3}$	${ }^{-1}$	。	－	。	－	－	3	。	－	－	Cutrins 10.17 m therregh rock．iffficult cecess
350	400	。	－2	-2	－ 1	－ 3	－ 1	。	。	0	。	－	－ 3	。	－ 6	－	
400	450	。	－2	${ }_{-2}$	－ 1	.3	－ 1	。	。	0	0	－	${ }^{3}$	0	${ }^{-6}$	${ }^{-6}$	
450	500	。	-2	－2	.$^{-1}$	－3	.$_{1}$	。	。	。	－	。	3	。	． 6	－	
500	550	。	－ 3	－2	－ 1	${ }^{-3}$	－2	。	。	0	。	。	－ 3	。	． 7	－ 7	cuttinge $20-23 \mathrm{~m}$ throubt rock．0．fficult aceess
550	600	。	${ }^{-3}$	－2	－ 1	$-^{-3}$	-2	。	。	0	。	0	3	。	． 7	－ 7	Cuttings 20.23 mm troush rock．0．fficult aceess
600	650	。	${ }^{-3}$	－2	－ 1	－ 3	-2	。	。	。	。	。	－ 3	。	－ 7	－7	Cuttings 20.23 mm troush rock．0．ifficultaceess
650	700	。	－ 3	－2	－ 1	－ 3	－2	0	0	0	－	－	－3	0	－ 7	－7	Cuttrese $20-23 \mathrm{~m}$ through rock．0ifficult aceess
700	750	－	${ }^{-3}$	－2	1	${ }^{-3}$	-2	。	－	0	－	0	． 3	－	\rightarrow	－ 7	Cutings 20－23m trough rock．0．fficulut aceess
750	800	。	－	－2	－ 1	－3	－2	。	。	。	0	－	3	。	－ 7	7	Cutrings 20.23 mm troush rock．0．fficult aceess
800	850	。	${ }^{-3}$	－2	${ }_{-1}$	${ }^{-3}$.$^{-1}$	。	。	。	。	。	－ 3	。	． 6	6	Cutiriss 10.17 Tm throush rock
850	900	。	-2	－2	－ 1	－ 3	－ 1	0	－	0	－	0	－	0	－	${ }_{6}$	Cutiriss 10.17 mm through rock
900	950	。	-2	－2	－	${ }^{-3}$	－ 1	0	－	0	0	－	－ 3	0	${ }^{-6}$	${ }_{6}$	Cutiriss 10.17 Tm through rock
950	1000	。	－2	－2	－ 1	.3	－ 1	。	。	0	0	－	－ 3	。	－	${ }^{-6}$	Cutirigs 10－17m through rock
1000	1050	0	－2	-2	－ 1	－ 3	。	0	－	。	0	0	－ 3	0	． 5	． 5	
1050	1100	。	－1	-2	－	－3	。	0	。	0	－	。	－3	。	4	4	
1100	1150	。	${ }_{-1}$	-2	${ }_{-1}$	－ 3	。	0	－	0	。	0	－ 3	。	4	4	At grade er Iow eartwors．Difficult sceess． H High
1150	1200	。	－	${ }_{-2}$	－ 1	${ }^{-3}$	。	。	－	。	。	－	－ 3	。	4	4	
1200	1250	。	。	－2	． 1	${ }^{-3}$	。	。	。	。	。	。	${ }^{3}$	。	4	4	
1250	1300	。	。	－2	${ }_{-1}$	${ }^{-3}$	。	。	。	。	。	。	${ }^{3}$	。	4	4	
1300	1350	。	－1	-2	1	－ 3	0	0	－	0	－	0	－3	。	4	4	
1350	1400	。	${ }_{-1}$	${ }_{-2}$	${ }_{-1}$	${ }^{-3}$	。	。	。	。	。	。	${ }^{3}$	。	4	4	
1400	1450	。	${ }_{-1}$	－2	－	${ }^{-3}$	。	。	－	。	。	。	${ }_{-3}$	。	4	4	
1450	1500	。	${ }_{-1}$	-2	1	－ 3	。	0	－	0	－	0	3	。	4	4	
1500	1550	0	－1	-2	－ 1	－ 3	0	－ 3	0	0	0	0	－ 2	0	－ 6	\rightarrow	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structure
1550	1600	。	－1	-2	－ 1	－ 3	－ 1	${ }^{-3}$	。	0	0	0	－2	。	${ }_{-7}$	．	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structure
1600	1650	。	-2	－2	－	$\cdot 3$	－ 1	－3	0	0	0	0	－	0	－	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structur
1650	1700	。	-2	－2	${ }_{-1}$	-3	－ 1	－3	0	。	0	0	－2	0	－	．	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structur
1700	1750	0	－2	－2	－	${ }^{-3}$	－ 1	－3	0	0	0	0	－2	0	－ 8	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal
1750	1800	0	-2	-2	1	-3	－ 1	${ }^{-3}$	0	。	0	0	－2	。	－	－ 9	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structur
1800	1850	0	－2	-2	${ }^{-1}$	-3	－ 1	${ }^{-3}$	0	0	0	0	－ 2	0	－	．	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structure
1850	1900	。	－2	-2	1	-3	－ 1	－ 3	0	0	。	。	－2	。	－	．	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structure adjusted to reflect geotechnical works to support structura
1900	1950	。	－ 2	-2	－ 1	${ }^{-3}$	－2	${ }^{-3}$	0	0	0	0	－2	。	．	．	Iele
1950	2000	－	${ }^{-3}$	－2	${ }^{-1}$	${ }^{-}$	－2	${ }_{-3}$	－	－	－	－	-2	。	．	．	
2000	2050	。	－ 3	－2	－1	${ }^{-3}$	－2	${ }^{-3}$	。	0	。	0	－2	。	．	．	
2050	2100	。	－ 3	－2	1	${ }^{-3}$	－2	3	0	0	0	0	2	。	－	9	Nely
2100	2150	。	－ 3	－2	${ }_{-1}$	－ 3	-2	－ 3	－	0	－	0	－2	。	－	． 9	Nomen
2150	2200	。	－ 3	－2	1	－ 3	－2	${ }_{-3}$	－	－	。	－	－2	。	．	．	
2200	2250	。	－ 3	-2	－ 1	$\cdot 3$	－2	${ }^{-3}$	。	0	0	0	－2	。	9	．	
2250	2300	。	－ 3	-2	-1	－ 3	${ }^{-3}$	${ }^{3}$	。	0	。	。	－2	。	10	． 10	New hidel Madut over watercourses five urie，flod
2300	2350	。	－ 3	－2	1	－ 3	－ 3	${ }^{-3}$	－	0	－	－	。	－ 2	－10	． 10	
2350	2400	。	－3	-2	${ }^{-1}$	－ 3	－2	－ 3	0	0	0	0	0	－2	－	，	New bridelivadut ove waterourses，rive urie，flood
2400	2450	0	－2	－2	-1	${ }^{-3}$	－ 1	${ }^{-3}$	0	－	0	0	0	－2	－	\rightarrow	$\begin{array}{l}\text { New bridge／viaduct over watercourses，river urie，flood } \\ \text { plain and local farm roads．Total length } 1000 \mathrm{~m} \text { ．Appraisal } \\ \text { adjusted to reflect geotechnical works to support structure }\end{array}$
2450	2500	－	-2	-2	${ }_{-1}$	${ }^{-3}$	－ 1	${ }^{-3}$	0	0	0	0	0	2	－	－	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structure
2500	2550	0	－ 1	－2	${ }_{-1}$	-3	0	${ }^{3}$	0	0	0	0	0	2	－	9	New bridge／viaduct over watercourses，river urie，flood plain and local farm roads．Total length 1000 m ．Appraisal adjusted to reflect geotechnical works to support structure
2550	2600	0	${ }^{-1}$	-2	-1	－3	0	0	0	0	0	0	0	－ 2	.3	－ 3	Earthworks to tie into existing A96．Disruption to existing road users of local road．High earthworks volumes route wide
2600	2650	0	0	-2	－ 1	－ 3	0	0	0	0	0	0	0	－	${ }^{-3}$	－ 3	Earthworks to tie into existing A96．Disruption to existing road users of local road．High earthworks volumes route wide
2650	2700	0	${ }^{-1}$	-2	－ 1	－3	0	0	0	0	0	0	0	2	${ }^{3}$	－ 3	Earthworks to tie into existing A96．Disruption to existing road users of local road．High earthworks volumes route wide wide
2700	2750	－	0	-2	－1	${ }^{-3}$	0	－	－	0	0	－	0	－2	${ }^{-3}$	－ 3	Earthworks to tie into existing A96．Disruption to existing wide
2750	2800	0	0	-2	－	－ 3	0	0	0	0	0	0	0	－ 2	${ }^{-3}$	${ }^{3}$	Earthworks to tie into existing A96．Disruption to existing road users of local road．High earthworks volumes route wide
2800	2850																
	2900																

