

Rules
Total Score
$=$ Alignment Score（Average of E，F，G，H and I）+ Geo
Score + Structures Score + Flooding Score（Average of L ，
M and N ）+ Utilities score + Constructability Score
（Minimum value of $\mathrm{P} \mathrm{\& Q}$ ）$=$ Total of 6 scores for 6
categories
Then if total＜or equal to－9 then should be coloured re because this represents possibility of 3 reds or 4 ambers If total is between -6 and -8 should be coloured
If total is between -3 and -5 sho

		$\begin{aligned} & \text { 를 } \\ & \text { (1) } \\ & \overrightarrow{3} \\ & \stackrel{0}{7} \end{aligned}$					Geotechnics Geotechnics	 							$\begin{aligned} & n \\ & \frac{0}{\infty} \end{aligned}$		
									$\begin{aligned} & \frac{\pi}{0} \\ & \frac{\square}{2} \\ & \frac{0}{U} \\ & \frac{0}{3} \end{aligned}$					$\begin{aligned} & \text {-1 } \\ & \stackrel{3}{3} \\ & \text { 言 } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text {-1 } \\ & \underline{\mathrm{I}} \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { 륻 } \\ & \stackrel{y}{0} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{3} \\ & \frac{3}{3} \\ & \stackrel{y}{2} \end{aligned}$
0	50	－	－	－ 2	－	0	－	0	－	－	－	。	。	－	${ }^{-3}$	－	
50	100	－1	0	－	0	－	－	0	0	0	0	。	。	2	${ }^{3}$	${ }^{-3}$	
100	150	${ }_{-1}$	。	2	。	。	。	。	。	。	。	。	－	2	${ }^{-3}$	${ }_{-3}$	
150	200	-1	。	2	。	。	。	。	。	。	。	。	。	2	${ }^{-3}$	${ }^{-3}$	
200	250	-1	。	2	。	。	。	。	－	。	。	。	。	2	3	${ }^{3}$	
250	300	-1	。	2	。	－	－	。	。	。	。	－	。	2	3	${ }^{-3}$	
300	350	-1	。	2	。	。	。	。	。	。	－	，	。	2	${ }^{3}$	${ }^{3}$	
350	400	－ 1	。	2	。	。	。	－	。	。	。	。	。	2	3	${ }^{-3}$	setion．
400	450	－1	。	－2	。	。	。	。	0	。	。	。	。	2	${ }^{-3}$	3	
450	500	-1	。	2	。	－	－	。	。	。	。	${ }^{-1}$	。	2	4	4	
500	550	－ 1	。	2	。	。	。	－	。	－	。	。	。	2	${ }^{3}$	${ }_{3}$	
550	600	${ }_{-1}$	。	2	。	。	。	\bigcirc	。	。	。	。	。	2	3	3	petan
600	650	${ }_{-1}$	0	$=$	0	。	－	。	－	。	。	－	。	2	4	4	Beal
650	700	${ }_{-1}$	。	，	。	－	。	－	。	－	。	${ }_{-1}$	。	2	4	4	
700	750	${ }_{-1}$	。	2	。	。	。	。	。	。	。	－	。	2	4	4	
750	800	${ }_{-1}$	。	2	。	。	。	－	。	。	。	1	。	2	4	4	
800	850	${ }_{-1}$	0	2	0	\bigcirc	－	。	。	\bigcirc	。	－	。	2	4	4	
850	900	\pm	。	2	。	。	－	－	。	。	。	${ }_{-1}$	。	2	4	4	
900	950	－	。	－ 2	。	。	。	－	。	。	。	。	。	2	3	${ }^{-3}$	
950	1000	${ }_{-1}$	。	2	－	－	。	－	。	－	－	。	。	2	${ }^{3}$	3	Sen
1000	1050	${ }_{-1}$	。	2	。	。	－	－	－	－	。	。	。	2	${ }^{3}$	${ }^{-3}$	Peed
1050	1100	${ }_{-1}$	。	2	。	。	。	。	。	。	。	。	。	2	${ }^{-3}$	${ }_{3}$	
1100	1150	${ }_{-1}$	－	2	。	。	。	－	。	。	。	。	。	2	3	3	
1150	1200	－ 1	－ 1	2	0	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	。	。	。	2	3	3	Sen el
1200	1250	${ }_{-1}$	${ }_{-1}$	2	。	。	。	\bigcirc	。	。	。	。	。	2	3	3	
1250	1300	${ }_{-1}$	-1	2	。	。	。	－	0	0	。	。	。	2	－	${ }^{-3}$	Sex
1300	1350	－ 1	－ 1	2	。	。	。	0	。	。	。	2	。	2	－	5	273 mm diameter SGN high pressure gas main crosses alignment at this point．Proposed road level approximately 5 m higher than existing．
1350	1400	－	${ }_{-1}$	2	。	。	。	。	。	。	。	。	。	2	${ }^{3}$	3	
1400	1450	－ 1	－1	－	0	0	0	－	0	0	0	。	。	－	3	${ }^{3}$	
1450	1500	${ }_{-1}$	${ }_{-1}$	2	。	\bigcirc	－	0	。	。	。	。	0	2	${ }^{3}$	3	
1500	1550	${ }_{-1}$	－2	2	。	。	，	－	。	－	。	。	。	2	4	4	
1550	1600	-1	2	2	。	－	．	\bigcirc	。	－	－	。	。	2	4	4	
1600	1650	${ }_{-1}$	2	2	。	－	－	\bigcirc	－	。	。	。	。	2	4	4	
1650	1700	${ }_{-1}$	-2	2	。	。	－	。	。	。	。	。	。	2	4	4	Combition mode
1700	1750	${ }_{-1}$	2	2	。	。	${ }_{-}$	0	。	。	。	。	。	2	4	4	coicle
1750	1800	${ }_{-1}$	－2	2	。	。	${ }_{-}$	0	。	。	。	。	。	2	4	4	
1800	1850	－ 1	－	2	。	。	－	。	0	－	－	－	。	－	5	－5	Bendiness and Disruption for construction due to online section，large embankment leading to increase in geo impact．
1850	1900	－ 1	－	2	。	。	2	－	0	－	－	．	0	2	－	．	Bendiness and Disruption for construction due to online section，large embankment leading to increase in geo impact．
1900	1950	－1	－	$=$	－	。	－	－	0	－	0	。	。	－	－	－	Bendiness and Disruption for construction due to online section，large embankment leading to increase in geo impact．
1950	2000	－	－	$=$	。	－	.$^{-1}$	。	0	－	0	0	。	－	4	4	endiness and Disruption for construction due to online section， impact．
2000	2050	\pm	－	2	。	\bigcirc	－	0	0	0	。	。	1	－ 1	3	3	
2050	2100	-1	－ 1	2	－	\bigcirc	－	－	\bigcirc	0	0	\bigcirc	1	－ 1	3	3	Construction moved off existing alignment improving access and disruption，impact on ground rated as slight．
2100	2150	－	－	2	－	－	－	－	0	－	。	。	－	1	2	－2	
2150	2200	-1	${ }_{-}$	2	－	－	。	－	－	－	。	－	－	－	2	2	
2200	2250	${ }_{-1}$	－2	2	。	。	${ }_{-1}$	－	0	0	。	。	－ 1	－	－3	3	Large cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2 nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2250	2300	${ }_{-1}$	－	2	。	0	${ }_{-1}$	0	\bigcirc	0	0	－	1	－	3	3	Large cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2 nd fix if vertical alignment lowered deeper cutting at 2 nd fix if vertical alignment lowered betweench 1000 and 2000 m to suit online construction．
2300	2350	－	－	－	。	。	－	。	。	0	。	。	－	－	${ }_{4}$	${ }^{+}$	Large cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2350	2400	－ 1	3	－	－	－	2	0	0	0	。	－	1	－ 1	4	4	Large cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction． between 1000 and 2000 to sult onlne constructon
2400	2450	${ }_{-1}$	${ }^{3}$	2	。	－	2	－	0	0	。	0	1	－	4	4	arge cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction en 1000 and 2000 m to suit onilne construction．
2450	2500	－ 1	－ 3	2	－	－	－ 2	0	0	0	。	－	1	－ 1	4	4	arge cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction． between 1000 and 2000 to sult onine construction
2500	2550	－	－	2	－	－	－	－	－	0	。	－	1	－ 1	4	4	Large cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2nd fix if vertical allignment lowered between ch 1000 and 2000 m to suit online construction． etween ch 1000 and 2000 to sut onine construction．
2550	2600	${ }_{-1}$	－2	2	。	。	2	。	0	0	。	。	－	－	4	4	arge cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2 nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2600	2650	${ }_{-1}$	2	2	\bigcirc	－	－ 1	\bigcirc	0	\bigcirc	。	\bigcirc	－ 1	－ 1	3	${ }^{-3}$	Large cutting in rock（up to 22 m deep）－potential to be a deeper cutting at 2 nd fix if vertical alignment lowered deeper cutting at 2nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2650	2700	${ }_{-1}$	-1	2	0	－	－	－	－	0	－	0	－	－	2	－2	
2700	2750	－	－	2	－	－	－	0	0	0	\bigcirc	\bigcirc	－	1	2	－	
2750	2800	\pm	${ }^{-1}$	2	－	－	。	－	。	－	。	。	－	－	－2	－2	
2800	2850	－	－ 1	－ 2	－	0	－	－	。	－	0	。	－	．	4	4	
2850	2900	${ }_{-1}$	${ }^{-1}$	2	。	。	2	。	0	0	－	－	．	－	4	4	
2900	2950	${ }_{-1}$	${ }^{-1}$	－	。	。	－2	。	。	－	－	－	．	－	4	4	
2950	3000	${ }^{-1}$		2	－	－	2	。	0	\bigcirc	－	－	．	－ 1	4	4	
3000	3050			2	。	。		。	。	。	－	。	－	－	4	4	

10950	11000	－1	0	2	0	－	－1	0	0	0	0	－	－	2	4	4	Compressible soils combined with disruption due to online construction．
11000	11050	－	0	： 2	。	0	－1	。	0	0	0	0	。	2	4	4	Compessile solis combined with disurution due toonline
11050	11100	${ }_{-1}$	${ }_{-1}$	2	。	。	－ 1	。	。	。	。	。	。	2	4	4	
11100	11150	－1	－1	2	0	。	－1	0	0	0	0	0	0	2	4	4	Compessili solis combined with disruptoon due to online
11150	11200	－1	－1	2	。	。	－1	0	。	。	0	－	0	2	4	4	Compersilie sols sombined wwith disurvion due to online
11200	11250	-1	${ }_{-1}$	2	。	。	－1	0	0	0	0	。	0	2	4	4	Compessile sols sombined with disurution due to oonime
11250	11300	${ }_{-1}$	${ }_{-1}$	－	。	。	－	0	0	。	。	0	。	2	4	4	Compessile sols sombined whtd disrupton due to onilioe
11300	11350	${ }_{-1}$	${ }_{-1}$	2	。	。	－1	。	。	0	。	。	。	－2	4	4	Compessili solis sombined with disurution due toonline
11350	11400	－1	。	－	0	。	－1	0	0	0	。	\bigcirc	。	2	4	4	Compresili solis combined with disruption due to oonine
11400	11450	${ }_{-1}$	。	2	。	。	－	0	0	。	。	。	。	2	4	4	Compessilie sols sombined with disrupiono due to online
11450	11500	－1	0	－2	。	。	－	0	0	0	0	。	0	－ 2	4	4	Compessile solis combined with disurution due toonline
11500	11550	${ }_{-1}$	。	－	。	。	－1	0	。	。	－	。	0	2	4	4	Compessile sols sombined with disrupiono due to online
11550	11600	${ }^{-1}$	。	－2	。	。	。	。	。	。	。	。	。	2	${ }^{-3}$	${ }^{-3}$	Beendines，disurution due to online constraction．
11600	11650	－	。	－2	。	。	。	。	－	－	－	。	。	2	${ }^{-3}$	${ }^{-3}$	Bendiness，disuruiton due to online constraction．
11650	11700	－1	。	－2	。	。	－	－	0	。	－	。	。	－2	${ }^{-3}$	－3	Bendines，disurution due to online costruction．
11700	11750	－1	。	－2	。	－	。	。	。	－	－	。	0	2	${ }^{-3}$	${ }^{-3}$	Bendiness，discupution due e oonline construction．
11750	11800	${ }_{-1}$	。	2	。	。	－	0	。	。	。	－2	。	2	－	－ 5	275 Kv SSE line crossing．Pylon within 100 m of alignment at ch 11750.
11800	11850	${ }_{-1}$	。	－2	0	。	。	0	0	。	。	－	。	2	${ }_{5}$	－	
11850	11900	－1	。	2	。	。	。	0	。	。	。	2	。	2	－	－	275 Kv SSE line crossing．Pylon within 100 m of alignment at ch 11750.
11900	11950	－	。	2	。	。	－	0	0	0	0	0	。	2	${ }^{-3}$	${ }^{-3}$	
11950	12000	${ }_{-1}$	。	-2	。	。	－	0	0	0	。	－	。	2	4	4	Distribution Mains cossings．
12000	12050	${ }_{-1}$	。	－2	。	。	\bigcirc	0	。	－	－	${ }_{-1}$	。	2	4	4	Distribution Manans cosising．
12050	12100	－1	0	－2	0	－	。	－	0	0	0	－1	0	2	4	4	Distribution Mains cososings．
12100	12150	${ }_{-1}$	。	－2	。	。	。	。	。	。	。	－ 1	。	2	4	4	Distribution Manas cosising．
12150	12200	－1	。	－2	。	。	。	0	0	0	。	－1	。	2	4	4	Distribution Mans scossings．
12200	12250	${ }_{-1}$	。	-2	。	。	。	。	。	。	。	－ 2	。	2	－	－	Smalt teament works combined with bendiness and
12250	12300	${ }_{-1}$	。	－2	。	。	－	0	。	0	。	－ 1	0	2	4	4	Distrivution Manas cososings．
12300	12350	－1	。	－2	。	。	－	0	－	0	。	${ }_{-1}$	0	2	4	4	Distribution Mains cossings．
12350	12400	－1	。	-2	。	。	。	0	0	0	。	－	。	－ 2	4	4	Distribution Mains cossinge．
12400	12450	－ 1	。	－ 2	。	。	。	0	。	。	。	－	。	2	4	4	Ostrituriton Mains cossings．
12450	12500	${ }_{-1}$	－1	－2	。	。	。	－	。	－	。	${ }_{-1}$	。	－	4	4	Ostribution Mains cossings．
12500	12550	${ }_{-1}$	－ 1	－ 2	。	0	。	－	。	0	。	-1	。	2	4	4	Distribution Mains cososings．
12550	12600	${ }_{-1}$	${ }_{-1}$	${ }_{-2}$	。	。	。	－1	。	0	。	-1	。	2	－	－	Small cuvert combline w wht bendiness and disuppion．
12600	12650	${ }_{-1}$	。	2	。	。	。	0	。	。	。	－	。	2	4	4	Ostribution Mans cossinges．
12650	12700	${ }^{-1}$	。	－2	。	。	－	－	。	－	。	－ 1	。	2	4	4	Distribution Manas corsins
12700	12750	${ }^{-1}$	0	-2	0	0	。	0	0	0	0	－	。	－ 2	4	4	Ostrituriton Manas cossinges．
12750	12800																

Rules
Total Score
$=$ Alignment Score（Average of E，F，G，H and I）+ Geo
Score + Structures Score + Flooding Score（Average of L
M and N ）+ Utilities score + Constructability Score
（Minimum value of $\mathrm{P} \mathrm{\& Q}$ ）$=$ Total of 6 scores for 6
categories
Then if total＜or equal to－9 then should be coloured re because this represents possibility of 3 reds or 4 ambers If total is between -6 and -8 should be coloured
If total is between -3 and -5 sho

															$\begin{aligned} & \tilde{0} \\ & \frac{0}{\sigma} \end{aligned}$		
								\qquad				c 部 管			$\begin{aligned} & \text {-1 } \\ & \underline{\mathrm{D}} \end{aligned}$		
0	50	－	－	－	－	－	－	。	－	－	。	。	。	－	3	3	
50	100	－	－	2	。	－1	。	－	－	－	－	－	。	2	${ }_{3}$	${ }^{-3}$	
100	150	${ }^{-1}$	－	2	。	－ 1	－	。	。	。	。	。	。	2	${ }^{-3}$	${ }^{-3}$	Peendes sad dismprion to
150	200	－	0	－	。	－ 1	－	－	0	\bigcirc	－	－	。	2	${ }^{-3}$	${ }^{-3}$	
200	250	${ }_{-1}$	。	2	。	－ 1	－	。	。	。	。	。	。	2	－3	${ }^{3}$	
250	300	-1	。	－	－	－1	－	。	。	。	。	。	。	2	${ }^{3}$	${ }^{-3}$	
300	350	－	0	2	。	－	－	0	0	－	－	。	。	－	${ }^{3}$	－3	
350	400	－ 1	。	2	。	-1	。	。	。	。	－	－	。	2	3	${ }^{-3}$	
400	450	${ }_{-1}$	－	2	。	.1	。	。	－	－	－	。	。	2	${ }^{3}$	${ }^{3}$	section．
450	500	-1	。	2	。	－ 1	。	。	。	。	－	－ 1	。	－2	4	4	
500	550	${ }^{-1}$	0	2	－	${ }_{-}$	－	0	。	－	－	。	。	2	${ }^{-3}$	${ }_{3}$	
550	600	${ }_{-1}$	。	2	，	${ }_{-1}$	。	。	。	。	－	。	0	2	3	${ }_{3}$	
600	650	－1	。	2	。	－ 1	。	。	0	。	－	－ 1	。	2	4	4	Sex
650	700	－	。	2	。	－	。	。	。	。	。	－ 1	。	2	4	4	Iten
700	750	${ }_{-1}$	0	2	。	${ }^{-1}$	－	。	。	0	。	－ 1	。	－	4	4	
750	800	${ }_{-1}$	。	2	。	－1	－	。	。	。	0	${ }_{-1}$	。	2	4	4	
800	850	-1	。	$=$	。	－ 1	。	。	－	。	－	－ 1	。	2	4	4	
850	900	－	0	－	\bigcirc	${ }_{-1}$	\bigcirc	0	0	－	\bigcirc	－ 1	0	2	4	4	
900	950	${ }_{-1}$	。	$=$	。	${ }_{-1}$	－	。	。	－	－	－	。	2	3	${ }^{-3}$	
950	1000	－1	0	2	－	${ }^{-1}$	－	－	。	－	－	－	。	2	3	${ }^{3}$	
1000	1050	－	。	2	0	－ 1	－	。	。	－	－	－	。	2	3	${ }^{3}$	
1050	1100	${ }_{-1}$	0	2	。	－ 1	。	0	。	\bigcirc	。	－	。	2	3	3	
1100	1150	${ }_{-1}$	${ }_{-1}$	2	。	${ }_{-1}$	。	。	。	。	。	。	。	2	3	${ }^{3}$	
1150	1200	－	${ }_{1}$	2	－	－1	－	。	－	－	。	\bigcirc	。	2	3	3	Seedines sadisispupion forconl
1200	1250	－ 1	－ 1	－	\bigcirc	${ }_{-1}$	0	0	0	0	－	\bigcirc	0	2	3	3	
1250	1300	－	－	－	0	－ 1	－	0	－	－	0	－	。	2	－	${ }^{-3}$	
1300	1350	－	－ 1	－ 2	－	${ }_{-1}$	－	－	－	。	－	－2	0	－	${ }_{-5}$	${ }_{-5}$	alignment at this point．Proposed road level approximately 5 m higher than existing．
1350	1400	${ }_{-1}$	${ }_{-1}$	2	．	． 1	。	。	。	。	－	。	。	2	3	${ }^{3}$	边
1400	1450	-1	-1	2	0	－ 1	－	。	－	－	。	－	。	2	3	3	
1450	1500	－	－	2	\bigcirc	${ }_{-1}$	${ }_{-1}$	0	0	0	\bigcirc	－	0	2	4	4	
1500	1550	${ }_{-1}$	－2	2	。	1	1	0	。	0	\bigcirc	。	。	2	4	4	
1550	1600	${ }_{-1}$	－2	2	。	－	－	。	。	。	。	－	。	2	4	4	
1600	1650	－	－2	2	0	－ 1	－	。	。	。	。	\bigcirc	。	2	4	4	
1650	1700	－	-2	$=2$	。	${ }_{-1}$	－	0	0	－	0	－	。	2	4	4	Comber
1700	1750	${ }_{-1}$	2	2	。	${ }^{-1}$	－1	。	。	－	。	－	。	2	4	4	comer
1750	1800	-1	－2	－	0	－ 1	－	0	0	。	0	。	0	2	4	4	Comer
1800	1850	${ }_{-}$	2	$\stackrel{2}{2}$	0	1	${ }_{-1}$	。	。	。	－	0	。	2	4	4	
1850	1900	－	-2	$=$	－	${ }^{-1}$	－	－	。	－	－	－	。	－2	4	4	
1900	1950	${ }_{-1}$	2	2	。	.1	${ }_{-1}$	。	。	。	。	。	。	2	4	4	
1950	2000	－ 1	2	2	0	－ 1	－	。	。	0	－	0	0	2	4	4	
2000	2050	${ }_{-1}$	2	2	0	${ }_{-1}$	－	0	－	－	。	．	1	－ 1	2	．	
2050	2100	${ }_{-1}$	${ }_{-1}$	2	－	${ }_{-}$	。	－	0	－	－	－	1	－	2	2	
2100	2150	${ }^{-1}$	－	2	\bigcirc	－	\bigcirc	\bigcirc	0	。	。	－	1	1	2	2	
2150	2200	${ }_{-1}$	－	2	－	.1	－	－	－	\bigcirc	0	－	1	－	3	3	Offline construction．Large cutting in rock（up to 22 m deep） potential to be a deeper cutting at 2 nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2200	2250	－	2	－	－	1	1	－	0	0	0	\bigcirc	1	－	3	3	Offline construction．Large cutting in rock（up to 22 m deep） potential to be a deeper cutting at 2 nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2250	2300	－	2	－2	。	－	2	。	。	。	。	。	I	－	4	4	
2300	2350	${ }_{-1}$	${ }^{3}$	2	。	${ }^{-1}$	2	。	。	。	。	。	1	－ 1	4	4	offline construction．Large cutting in rock（up to 22 m deep） potential to be a deeper cutting at 2 nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2350	2400	${ }_{-1}$			－	－ 1	2			－		。	－ 1	-1	4	4	Offline construction．Large cutting in rock（up to 22 m deep） potential to be a deeper cutting at 2 nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2400	2450	－	${ }^{-3}$	－ 2	－	${ }^{1}$	2	－	0	0	－	－	1	．	4	4	offiline construction．Large cutting in rock（up to 22 m deep） potential to be a deeper cutting at 2 nd fix if vertical alignment lowered between ch 1000 and 2000 m to suit online construction．
2450	2500	－	${ }^{3}$	2	－	${ }^{-1}$	${ }_{-2}$		。	．		，	，		4	－ 4	
2500	2550	${ }_{-1}$	－	2	。	${ }_{-1}$	2	－	－	－	－	－	－ 1	－	4	4	
2550	2600	${ }_{-1}$	3	－2	－	\ldots	－	－	0	\bigcirc	。	。	1	－	${ }_{3}$	${ }_{-3}$	
2600	2650	－1	－2	2	。	${ }_{-1}$	－	。	。	。	。	。	－	－	${ }^{3}$	3	
2650	2700	${ }_{-1}$	－	－	\bigcirc	－	－ 1	－	\bigcirc	\bigcirc	\bigcirc	－	1	－	${ }^{3}$	${ }^{-3}$	
2700	2750	－	－-1	2	。	－	－	。	－	－	－	－	－	－	－2	2	
2750	2800	${ }^{-1}$	${ }^{-1}$	2	。	${ }_{-}$	－	－	。	。	－	。	－	1	2	2	
2800	2850	${ }_{-}$	-1	2	－	${ }_{-}$	－	2	－	－	－	－	－	－ 1	4	4	Strature er side
2850	2900	-1	${ }_{-1}$	2	－	${ }_{-}$	－	－	\bigcirc	0	－	2	－	－	4	4	
2900	2950	－	－-1	2	。	${ }_{-}$	。	\bigcirc	0	－	。	－ 2	－	－	4	4	
2950	3000	－	－ 1	2	－	${ }_{-}$	－	0	。	。	。	2	．	，	4	4	
3000	3050	${ }_{-1}$	${ }_{-1}$	2	0	${ }^{-1}$	-2	。	0	。	。	2	1	－	\checkmark	\checkmark	
3050	3100	${ }_{-1}$	0	2	0	\cdots	2	。	0	。	\bigcirc	\bigcirc	1	－	4	4	
3100	3150	${ }_{-1}$	。	2	\bigcirc	－	2	。	。	。	\bigcirc	－	－ 1	－	4	4	
3150	3200	-1	0	－2	。	${ }^{-1}$	－ 2	0	\bigcirc	－	－	。	${ }_{1}$	－	4	4	
3200	3250																

3250	3300	－	。	2	。	－	2	－	。	。	。	－	1	1	4		
3300	3350	1	－	2	－	．	－	－	－	\bigcirc	－	2	1	－			Sonwemin Domot otalema
3350	3400		－	2	－	－	－	－	－	－	－	－	－	．	2		
3400	3450	－	－	2	－	－	－	－	－	\bigcirc	\bigcirc	－	1	1	2		
3450	3500	$-$	－	2	－	1	－	－	－	－	－	－	1				
3500	3550	1	。	2	。	－	。	。	。	。	。	。	1				sathea
3550	3600	－	。	2	。	－	。	－	－	－	。	－	1				
3600	3650			2	－	－		－	－	－	－	－					
3650	3700	－	－	2	。	1	。	。	－	。	－	－	1				
3700	3750	－	－	2	－	－	。	。	－	－	－	－	1				
3750	3800	\pm	${ }_{-1}$	2	－	－	－	－	－	－	\bigcirc	－	1		3	3	Sismeme
3800	3850		－	2	－	－	。	－	－	－	\bigcirc	\bigcirc	1				Sismeme
3850	3900	－	－	2	－	$\stackrel{-}{1}$	－	－	－	－	－	－	－		3	3	
3900	3950	1	－	2	－	－	。	－	－	－	－	－					
3950	4000	－	．	2	－	－	－	－	－	－	－	。	1		3		Sole
4000	4050	－	－	2	－	－	－	－	－	－	－	－	1		3	3	Sider
4050	4100	－	－	2	－	－	－	－	－	－	－	－	－		3	3	Sill
4100	4150	－	－	2	－	．	－	－	－	－	－	－	1				
4150	4200	－	－	2	－	1	。	－	－	－	－	。	．				为
4200	4250	－	－	2	－	－	－	－	－	－	\bigcirc	－	1				Sist
4250	4300	1	－	2	－	－	－	\bigcirc	－	－	。	\bigcirc	1		2	2	
4300	4350	．	－	2	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	1		2	2	
4350	4400	－	－	2	\bigcirc	－	－	\bigcirc	－	\bigcirc	\bigcirc	－	－		2	－	
4400	4450	－	－	2	\bigcirc	1	－	－	\bigcirc	\bigcirc	－	－	1		3	，	
$\frac{4450}{4500}$	$\begin{aligned} & 4500 \\ & \hline 4550 \\ & \hline \end{aligned}$	－	－	2	\bigcirc	$\stackrel{1}{4}$	\cdots	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	1	1	4	4	
4500	4550	$\stackrel{1}{1}$	2	$\stackrel{2}{2}$	\％	$\stackrel{-1}{-1}$	2	－	\because	\because	\because	\％	1	1	4	4	
4600	4650	－	2	2	。	－	2	。	－	－	。	。	1		4	4	
4650	4700	－	2	2	－	1	2	－	－	－	－	－	1	．	4	4	
4700	4750	1	－	2	－	－	－	－	\bigcirc	\bigcirc	－	2	1		4	4	
4750	4800	－	－	2	－	－	－	。	－	－	－	－	1	，	2	2	
4800	4850	．	－	2	－	－	－	。	－	－	－	－	1		2	2	
4850	4900	－	2	2	－	－	2	－	－	－	－	。	．		4	4	
4900	4950	1	2	2	－	1	2	－	－	－	－	－	1		4	4	
4950	5000	－	2	2	－	－	2	－	－	\bigcirc	－	－	1		4	4	
5000	5050	－	1	2	－	${ }^{-}$	－	－	\bigcirc	－	－	－	1	1	2	2	
5050	5100	1	－	2	－	1	－	－	－	－	－	－	1		2	2	
$\frac{5100}{5150}$	5150	－	－	2	－	${ }^{-}$	－	－	\bigcirc	\bigcirc	－	－	1	1	2	2	
5150 5200	5200	1	－	2	－	${ }^{-}$	－	。	－	\bigcirc	－	－	1	1	2	2	
5200	5250	－	－	2	－	－	－	－	\bigcirc	－	－	－	1	1	2	2	
5250	5300	－	－	2	－	${ }^{-1}$	－	－	\bigcirc	\bigcirc	－	－	1	．	2	2	
5300	5350	－	－	2	－	${ }_{-}$	。	－	\bigcirc	－	－	－	1	－	2	2	
5350	5400	－	－	2	－	－	。	－	－	－	－	－	1		2	2	
5400	5450	－	－	$=$	－	－	。	－	\bigcirc	\bigcirc	\bigcirc	－	－	1	－	2	
5450 5500	5500	．	－	2	－	－	－	。	－	－	－	－	1		2	－	
5500	5550	1	－	2	－	－	。	。	－	\bigcirc	。	。	1		2	2	
5550	5600	1	。	2	。	－	。	。	。	。	。	2	1	1	4	4	
5600	5650						，										Sserzs．
5650	5700		。	2	－	－	－	－	－	－	－	－	1		4		
		－	－	2	－	1	－	－	－	－	－	2	1		4		Ssizel
5700	5750		。	2	。	1	。	。	－	－	。	2	－	1	4	4	
5750	5800	1	－	2	－	－	－	。	－	－	\div	\bigcirc	1		4	2	
5800	5850	－	．	2	\bigcirc	1	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1		$\stackrel{2}{2}$	$\stackrel{2}{2}$	
5850	5900	－	－	2	－	－	－	。	－	\bigcirc	－	－	－	1	2	2	
5900	5950	$-$	\bigcirc	2	－	－	。	。	－	\bigcirc	－	－	1	1	2	－	
5950	6000	－	－	2	－	1	－	－	－	－	－	－	1		2	2	
6000	6050	4	－	2	－	1	－	－	\bigcirc	\bigcirc	－	，	1	1	2	2	
6050	6100	\pm	－	2	－	${ }^{-}$	－	。	－	－	－	－	1	1	2	2	
6100	6150	－	－	2	－	1	－	－	\bigcirc	\bigcirc	－	－	1	－	2	2	
6150	6200	－	－	2	－	1	－	。	－	－	－		1	1	2	2	
6200	6250	－	\bigcirc	2	\bigcirc	4	－	－	\bigcirc	\bigcirc	\bigcirc	－	1	－	2	2	
6250	6300	1	1	2	－	1	。	－	－	\bigcirc	－	－	－		2	－	
6300	6350		－	2	。	1	。	－	－	－	－		1		，		
6350	6400	－	－	2	－	－	－	－	－	－	－	－	1	1	2	－	
6400	6450	－	－	2	－	1	－		\bigcirc	\bigcirc			1		2	2	
6450	6500	－	1	2	－	－	。	－	\bigcirc	\bigcirc	－	－	1	1	2	2	
6500	6550	．	-1	2	－	\pm	－		－	－			1		2	2	
6550	6600	1	$\stackrel{-}{1}$	2	－	$\stackrel{-}{-}$	。	－	－	－	－	－	1	1	2	2	
		$\stackrel{-}{-1}$	$\stackrel{-}{-1}$	$\stackrel{2}{2}$	－	$\stackrel{-1}{-1}$	－	－	－	－		－	1	1	－ 2	$\stackrel{2}{2}$	
6700	6750	1	－	${ }_{2}^{2}$	\div	1	－		\div	\div			1		2	2	
6750	6800	$-$	-1	2	\bigcirc	－	－	－	\bigcirc	\bigcirc	\bigcirc	－	1		2	2	
6800	6850	1	－	2	\bigcirc	${ }_{-}$	。	－	\bigcirc	－	－	．	1	1	3	3	
6850	6900	－	－	2	－	1	。	－	－	－	－	\cdots	1		3	3	
6900	6950 7000	$\stackrel{1}{ }$	1	2	\bigcirc	${ }_{-}$	－	－	\bigcirc	\bigcirc	\bigcirc	${ }^{-}$	1		3	${ }^{-3}$	
6950	7000	1	$\stackrel{1}{1}$	2	－	$\stackrel{-}{1}$	。	。	－	－	－	．	1		3	3	
		$\stackrel{1}{1}$	${ }_{-1}$	$\stackrel{2}{2}$	－	$\stackrel{-1}{ }$	－	－	\because	\div	－	-1	$\stackrel{1}{1}$	1	，	3	
7100	7150	$\stackrel{-1}{+}$	$\stackrel{1}{\square}$	2	\div	$\stackrel{-1}{+}$	\div	\div	\div	\div	\div	4	1	1	${ }^{3}$	${ }^{-3}$	
7150	7200	$-$	－	2	－	${ }_{-}$	。	。	－	－	－	$\stackrel{1}{ }$	1	1	3	${ }^{3}$	
7200	7250	－	－	2	－	－	。	－	－	\bigcirc	－	－	1	，	3	3	
7250	7300	1	－	2	－	1	－	。	－	－	－	4	1	1	3	${ }^{3}$	
7300	7350	1	－	2	。	1	－		\bigcirc	\bigcirc			$\stackrel{1}{ }$		，		
$\begin{array}{\|l\|} \hline 7350 \\ \hline 7400 \\ \hline \end{array}$	7400	$\stackrel{-}{-}$	\pm	2	－	$\stackrel{-1}{ }$	。	－	－	\div	－	－	1	1	3	${ }^{3}$	
7450	7500	$\stackrel{-1}{-1}$	－	${ }_{2}^{2}$	\div	$\stackrel{-1}{-1}$	\because	－	\div	\div	\div	－	${ }^{1}$	1	3	3	
7500	7550	－	－	2	\bigcirc	－	－	－	\bigcirc	\bigcirc	－	$\stackrel{1}{4}$	1		3	，	
7550	7600	$\stackrel{1}{1}$	－	2	\bigcirc	-1	。	－	－	\bigcirc	\bigcirc	\pm	1	1	3	3	
7600	7650		－	2	－	1	－	－	－	－	。	4	1		3	${ }^{3}$	
7650	7700	$\stackrel{-1}{-1}$	－	$\stackrel{2}{2}$	\％	${ }^{-1}$	－	－	－	－	－	\therefore	1	1	$\stackrel{3}{3}$	${ }^{3}$	
7750		$\stackrel{-1}{+}$	$\stackrel{0}{-1}$	$\stackrel{2}{2}$	\div	$\stackrel{-1}{-1}$	\div	\bigcirc	\div	\div	\because	$\stackrel{1}{4}$	1	－	3	3	
7800	7850	$-$	－	2	\bigcirc	${ }_{-}$	－	－	－	\bigcirc	\bigcirc	2	1	1	4	4	
7850	7900	\pm	－	2	－	－	。	。	－	－	。	．	－	－	3	${ }^{3}$	
7900	7950	\cdots	－	2	－	1	。	。	－	－	－	4	1		3	3	
7950	8000	$-$	－	2	\bigcirc	1	。	。	\bigcirc	\bigcirc	\bigcirc	－	1		${ }^{3}$	${ }^{-3}$	
8000	8050	，	－	2	－	－	。	－	－	\bigcirc	－	－	1		3	3	
8050	8100	4	1	2	－	1	。	－	－	\bigcirc	－	$\stackrel{1}{4}$	1	1	3	3	
8100	8150	\pm	\pm	$\stackrel{2}{2}$	－	${ }_{-1}$	$\stackrel{-}{+}$	0	\div	\div	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline 0 \end{array}$	$\frac{-2}{-2}$	1	1	$\stackrel{5}{5}$	－s	
8200	8250	$\stackrel{-1}{-1}$	． 2	${ }_{2}^{2}$	－	$\stackrel{-1}{+}$	$\stackrel{-1}{ }$	－	\div	\div	\div	$\stackrel{2}{2}$	1		．	－-5	
8250	8300	－	2	2	－	1	1	－	－	－	－	2	1	1	－	－	Sels
8300	8350	－	2	2	－	－	－	。	。	－	－	2	－	1	．	－	
8350	8400	－	2	2	。	－	－	。	－	－	－	2	1	1	－	－	
8400	8450	－	2	2	。	1	－	。	－	－	－	2	1	1	－	－	
8450	8500	－	$-$	－	\bigcirc	－	－	－	\bigcirc	\bigcirc	－	\therefore	1	1	4	4	
$\begin{array}{r}8500 \\ 8550 \\ \hline\end{array}$	${ }_{88500}^{850}$												1	1		－	

12700	12750	-1	0	－ 2	0	－ 1	－	－	0	0	－	${ }^{-1}$	0	－2	4	4	Distribution Manas cososings．
12750	12800	${ }_{-1}$	。	2	。	－1	。	。	。	。	。	－2	0	2	－	－ 5	Smal weament works combined with bendiness and
12800	12850	－1	0	－2	0	－1	。	。	0	0	0	－	0	－2	4	4	Oistribution Mans cosasings．
12850	12900	－1	0	－2	0	－1	－	0	0	0	0	－ 1	0	2	4	4	Oistroution Manas crossings．
12900	12950	－1	0	－2	0	－ 1	。	。	0	0	0	－1	0	2	4	4	Oistroution Manas crossings．
12950	13000	－1	0	－2	0	${ }^{-1}$	－	0	0	0	0	－1	0	－2	4	4	Oistributo M Mans cossings．
13000	13050	－1	0	－2	0	－1	－	0	0	0	0	－	0	－2	4	4	Distriution Mans cososinge．
13050	13100	－1	－1	－2	。	${ }^{-1}$	。	。	0	0	。	－	。	－2	4	4	Distribution Manas cossings．
13100	13150	－1	－1	－2	0	－1	－	0	0	0	0	－ 1	。	－2	4	4	Oistribution Manas cosising．
13150	13200	${ }_{-1}$	${ }_{-1}$	－2	。	${ }_{-1}$	。	${ }_{-1}$	。	0	。	1	。	2	－	5	small cuvert comblied with bendiness and disurpion．
13200	13250	－1	。	－2	。	－ 1	。	。	0	。	。	${ }^{-1}$	。	－2	4	4	Distribution Manas cososings．
13250	13300	${ }_{-1}$	。	－2	0	${ }_{-1}$	。	。	0	0	。	－	。	2	4	4	Oistribution Mains cosines．
13300	13350																
13350	13400																

Rules
Total Score
$=$ Alignment Score（Average of E，F，G，H and I）＋Geo
Score + Structures Score + Flooding Score（Average of L
$\left.\begin{array}{l}M \text { and } \mathrm{N})+\mathrm{Utilities} \text { score }+ \text { Constructability } \mathrm{Scor} \\ \text {（Minimum value of } \mathrm{P} \& Q\end{array}\right)=$ Total of 6 scores for σ
categories
Then if total＜or equal to -9 then should be coloured r red because this represents possibility of 3 reds or 4 ambers since this could represent 2 reds or $3 / 4$ colore
If total is between -3 and -5 sho

															$\begin{gathered} n \\ \frac{0}{0} \end{gathered}$		
				$\begin{aligned} & \text { 罰 } \\ & \text { 를 } \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$					$\begin{aligned} & \frac{\pi}{\circ} \\ & \circ \\ & \frac{0}{2} \\ & \frac{0}{\#} \end{aligned}$			드․ 部 in			$\begin{aligned} & \text {-1 } \\ & \underline{\ddot{+}} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 3 \\ & \frac{3}{3} \\ & \stackrel{3}{n} \end{aligned}$
0	50	－	0	2	0	\bigcirc	－	－	\bigcirc	\bigcirc	－	－	－	2			
50	100	－	－	2	－	－	－	－	－	－	0	－	－	2			
100	150	－	－	2	－	－	－	－	－	－	0	－	。	2			
150	200	。	－	－	－	。	。	。	－	。	－	。	0	2			
200	250	。	－	2	－	－	。	。	－	－	\bigcirc	－	0	2			
250	300	0	－	2	－	－	－	－	。	。	。	－	0	2			
300	350	\bigcirc	－	－2	－	－	－	－	－	－	－	－	。	2			
350	400	0	－	2	－	－	－	－	。	－	。	－	。	2			
400	450	－	－	2	－	－	－	－	－	－	。	－	－	2			
450	500	－	。	2	。	。	－	。	。	。	。	${ }_{-1}$	。	2			3 Trafic soltand sases．
500	550	－	－	2	－	－	－	－	－	0	－	－	。	2			
550	600	0	－	2	－	－	－	－	－	0	－	－	0	2			
600	650	－	0	2	－	－	\bigcirc	0	0	－	。	${ }^{-1}$	0	2			3 3ss 33x mines．
650	700	0	－	2	－	－	\bigcirc	－	0	－	。	${ }^{-}$	0	2			3 3ss 33x lines．
700	750	－	－	2	－	－	－	－	－	－	－	－ 1	。	2			3 3ss 33x lines．
750	800	－	－	－2	－	－	－	－	。	。	－	${ }^{-}$	。	2			3 3ss 33ximes．
800	850	－	－	2	－	－	－	－	－	－	。	－	\bigcirc	2			
850	900	－	0	2	。	。	－	－	－	。	。	${ }^{-1}$	。	2			3 s S 3 3avines．
900	950	－	。	2	－	。	－	－	－	0	－	－	0	－2			
950	1000	－	－	2	－	－	－	0	－	0	－	。	0	2			
1000	1050	－	0	2	－	－	－	－	－	－	。	－	。	2			
1050	1100	\bigcirc	－	2	－	－	－	－	－	－	－	。	。	2			
1100	1150	－	－	2	－	－	－	－	。	。	－	。	。	－2			
1150	1200	－	－	2	－	－	－	－	。	。	－	－	－	2			
1200	1250	－	－	2	－	－	－	－	－	。	。	。	。	2			
1250	1300	－	－	2	。	－	－	－	－	。	－	－	0	2			
1300	1350	\bigcirc	0	-2	0	。	－	。	0	0	\bigcirc	2	。	2			
1350	1400	\bigcirc	0	－	0	－	－	－	0	－	－	2	0	2			
1400	1450	－	－	2	－	－	－	－	－	。	－	－	。	2			
1450	1500	－	－	2	－	－	－	－	－	。	。	－	。	2			
1500	1550	－	－	2	－	－	－	－	－	－	－	－	1	－			
1550	1600	－	－	2	－	－	－	－	。	－	－	－	1	1			
1600	1650	－	－	2	－	－	－	－	0	－	－	－	1	－			
1650	1700	\bigcirc	－	2	\bigcirc	－	．	0	0	0	0	－	1	1			
1700	1750	。	2	2	。	－	．	0	0	0	－	。	－	－			
1750	1800	－	2	2	0	－	1	－	－	－	。	。	1	1			
1800	1850	0	2	2	0	\bigcirc	2	。	0	。	。	${ }_{-1}$	1	－1			
1850	1900	。	3	－	．	\bigcirc	2	－	0	0	\bigcirc	0	1	－1			
1900	1950	。	3	2	，	－	2	。	。	，	。	。	1	－			
1950	2000	\bigcirc	${ }^{-3}$	2	0	\bigcirc	2	。	0	。	。	\bigcirc	－	1			Spentice
2000	2050	\bigcirc	${ }^{-}$	-2	0	－	2	\bigcirc	－	0	－	－	1	－			
2050	2100	。	2	2	0	－	－	0	－	0	－	－	－	1			，siphtio
2100	2150	0	2	2	－	－	1	0	0	0	。	\bigcirc	1	1			
2150	2200	－	－	2	－	－	－	0	0	0	－	－	1	－1			
2200	2250	－	－	2	－	－	\bigcirc	0	－	－	－	－	1	1			
2250	2300	－	－	2	－	。	\bigcirc	－	－	－	－	－	1	－1			
2300	2350	－	－	2	－	－	－	－	－	。	－	－	1	1			
2350	2400	－	－	－2	－	。	－	－	。	。	。	。	1	－			
2400	2450	－	－	-2	－	－	－	－	－	－	－	－	1	－			
2450	2500	－	-1	2	－	－	－	－	－	。	－	－	－	－			
2500	2550	－	${ }_{-}$	2	－	－	－	－	－	－	－	－	1	－			
2550	2600	。	2	2	－	－	－	0	－	－	－	。	1	1			
2600	2650	－	－ 1	2	0	\bigcirc	\bigcirc	0	0	0	0	－	1	－			
2650	2700	0	－	2	0	－	\bigcirc	－	－	－	\bigcirc	－	1	1			
2700	2750	－	－	-2	－	－	－	－	。	。	－	－	1	1			
2750	2800	－	－	-2	。	－	${ }_{-1}$	－	。	。	－	。	1	－			
2800	2850	－	2	-2	－	－	${ }_{-}$	－	－	。	。	。	1	－			
2850	2900	0												－			
2900	2950	。	－2	-2	－	。	-2	。	。	。	－	。	－	－			$\begin{aligned} & \text { Large cutting (up to } 21 \mathrm{~m} \text { high) on unidentified soils. } \\ & \text { Moderate impact extended due to large cutting from } 2850 \\ & \text { to } 3600 \text {. } \end{aligned}$
2950	3000	。	${ }_{3}$	-2	。	。	－2	。	。	。	。	。	1	－1			Large curting（up to 21 m high）on unidentified soils． Moderate impact extended due to large cutting from 2850 to 3600 ．
3000	3050	－	． 3	2	－	－	2	－	0	0	－	2	1	1			arge cutting（up to 21 m high）in unidentified soils combined with 273 mm SGN HP mains crossing．Structure at ch 3150 ．Overall impact rated as moderate．
3050	3100	－	2	2	－	。	－	－	0	－	。	－	－	－			arge cutting（up to 21 m high）in unidentified soils combined with 273 mm SGN HP mains crossing．Structure at ch 3150 ．Overall impact rated as moderate．
3100	3150	－	-2	－2	。	。	－	。	。	。	。	－	－	-1			Large cutting（up to 21 m high）in unidentified soils ch 3150 ．Overall impact rated as moderate．
3150	3200	0	－	－	0	\bigcirc	－	－	0	0	0	2	－	－			Large cutting（up to 21 m high）in unidentified soils th 273 mm SGN HP mains crossing．Structure ch 3150 ．Overall impact rated as moderate．
3200	3250	－	－	－	－	－	－ 1	－	0	－	0	2	－	－			Large cutting（up to 21 m high）in unidentified soils－ ch 3150 ．Overall impact rated as moderate．
3250	3300	－	－	2	0	\bigcirc	－	0	0	0	0	－	1	－ 1			Large cutting（up to 21 m high）in unidentified soils combined with 273 mm SGNHP mains crossing．Structure at ch 3150 ．Overall impact rated as moderate．
3300	3350	－	－	－ 2	－	\bigcirc	－	－	0	0	－	－ 2	－	－			Large cutting（up to 21 m high）in unidentified soils combined with 273 mm SGN HP mains crossing．Structure at ch 3150 ．Overall impact rated as moderate．
3350	3400											2	－	${ }^{-1}$			arge cutting（up to 21 m high）in unidentified soils combined with 273 mm SGN HP mains crossing．Structure ch 3150 ．Overall impact rated as moderate．
3400	3450										。						Large cutting（up to 21 m high）in unidentified soils 5 combined with 273 mm SGN HP mains crossing．Structure ch 3150 ．Overall impact rated as moderate．

11300	11350	0	－	－ 2	－	。	。	－	0	0	。	。	0	-2	2	－2
11350	11400	。	。	－2	。	0	。	。	。	。	。	${ }_{-1}$	。	2	3	Distribution Mans cossinges．
11400	11450	。	。	－2	0	。	－	。	。	。	。	． 1	。	2	3	3 Obstribution Mans cossinges．
11450	11500	0	0	－2	。	－	－	。	0	0	。	－ 1	0	2	3	－3 3istribution Mains cosising．
11500	11550	－	0	－2	0	0	。	0	0	0	。	${ }^{-1}$	。	－ 2	－3	－30Istribution Mains cossings．
11550	11600	。	。	－2	。	。	。	。	。	。	。	－1	。	－2	－	－30istribution Mans crosinges．
11600	11650	。	。	2	。	。	。	。	。	。	。	2	。	－2	A	-4 $\begin{array}{l}\text { Small treatment works combined with bendiness and } \\ \text { disruption．}\end{array}$
11650	11700	。	。	－2	。	。	。	。	。	－	。	－ 1	。	－2	－	－30 Stribution Mans crosings．
11700	11750	。	。	－2	。	。	。	。	。	－	。	－ 1	。	2	．	－3 30stribution Mans cossings．
11750	11800	－	。	－2	。	。	。	。	－	－	－	－ 1	。	2	，	－3 3istribution Mains crossings．
11800	11850	。	。	-2	。	。	。	0	。	0	。	－ 1	。	－2		－3 30stribution Mans crosinges．
11850	11900	。	-1	－2	。	。	。	。	。	。	。	－-1	。	－ 2	，	－ 4 Distribution Mains crosings．
11900	11950	。	－1	－2	。	0	。	0	。	0	。	－ 1	。	－2	4	
11950	12000	。	${ }_{-1}$	． 2	。	。	。	－	。	0	。	－ 1	。	． 2		－5 small cuvert combined with bendiness and disvopion．
12000	12050	0	。	－ 2	。	。	。	－	。	。	0	－ 1	0	－2		3 3istribution Mains cossinges．
12050	12100	，	。	－2	。	。	。	。	。	。	。	，	。			3 Obstribution Mans cossinges．
12100	12150	。	。	－2	。	。	。	0	。	。	。	－ 1	。	0		${ }_{-1}$－1 Strstibution Mains cossinges．
12150	12200															

															$\begin{aligned} & \sim \\ & \frac{0}{0} \end{aligned}$		
							$\begin{aligned} & 0 ి \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{0} . \end{aligned}$								$\begin{aligned} & \text {-1 } \\ & \underline{\tilde{y}} \end{aligned}$		2 3 $\frac{3}{3}$ $\stackrel{3}{3}$
0	50	-1	－	2	－	。	。	－	－	－	。	。	。	－	3	－ 3	
50	100	${ }_{-1}$	。	2	${ }^{-1}$	。	。	－	－	－	－	。	。	2	${ }^{3}$	${ }_{-3}$	
100	150	-1	。	2	${ }_{-1}$	。	。	。	。	。	－	。	。	2	${ }^{-3}$	${ }^{-3}$	
150	200	－ 1	。	2	1	。	。	－	0	－	。	。	。	2	－ 3	-3	
200	250	-1	0	－ 2	${ }^{-1}$	－	－	－	－	0	－	0	。	2	${ }^{-3}$	${ }_{3}$	Penden
250	300	－	。	2	${ }^{-1}$	。	。	。	。	－	。	。	。	2	${ }^{3}$	${ }^{-3}$	beend
300	350	-1	－	－ 2	1	－	－	－	0	－	－	。	。	2	3	${ }^{-3}$	
350	400	－	。	2	－	。	。	。	。	0	。	。	。	2	3	－	
400	450	-1	－	2	－ 1	－	。	。	。	。	－	。	。	－	3	${ }^{-3}$	
450	500	－	－	2	－	。	，	。	－	－	－	${ }^{-1}$	。	2	4	4	
500	550	${ }_{-1}$	。	2	1	－	。	。	。	－	。	。	。	2	${ }^{3}$	3	
550	600	－	－	2	.$^{-1}$	－	－	。	－	－	0	－	。	2	3	3	
600	650	，	。	2	1	。	。	。	－	－	．	${ }^{-1}$	。	2	4	4	bexter
650	700	${ }_{-1}$	－	2	${ }_{4}$	。	。	，	－	－	－	${ }_{-1}$	。	2	4	4	deater
700	750	－	。	2	1	。	。	。	。	。	。	－	。	－	4	4	
750	800	－ 1	0	2	．	\bigcirc	\bigcirc	0	－	。	－	${ }^{-1}$	。	2	4	4	
800	850	${ }_{-1}$	。	，	－ 1	。	。	。	。	－	0	${ }^{1}$	。	2	4	4	
850	900	${ }_{-1}$	－	2	1	－	。	－	－	0	－	${ }^{-1}$	。	2	4	4	
900	950	-1	0	2	－ 1	\bigcirc	－	。	。	。	。	\bigcirc	。	2	3	3	
950	1000	-1	。	2	${ }^{1}$	－	。	。	0	－	－	。	。	2	3	3	
1000	1050	${ }_{-1}$	。	2	${ }^{1}$	。	。	。	0	0	－	。	。	2	3	3	
1050	1100	-1	0	－	1	。	－	。	。	。	－	。	。	2	${ }^{-3}$	3	
1100	1150	${ }_{-1}$	－	2	${ }_{-1}$	－	－	。	－	。	－	－	。	2	3	${ }^{-3}$	
1150	1200	-1	。	2	1	－	－	。	－	－	0	。	。	－	3	3	
1200	1250	-1	。	2	1	。	－	－	0	－	－	。	。	－	3	－ 3	
1250	1300	－	。	2	1	。	。	0	。	。	。	。	。	2	${ }^{3}$	${ }^{-3}$	
1300	1350	-1	。	2	1	。	\bigcirc	0	0	0	－	2	。	2	－	－	
1350	1400	${ }_{-1}$	。	2	${ }_{-1}$	。	。	。	。	－	。	。	。	2	${ }^{3}$	${ }^{-3}$	
1400	1450	1	。	2	1	－	－	。	。	。	－	。	。	2	3	${ }^{-3}$	
1450	1500	-1	0	2	－	\bigcirc	\bigcirc	－	0	0	。	－	。	2	3	3	
1500	1550	1	。	2	${ }_{1}$	－	－	－	－	0	－	。	。	2	－	－3	
1550	1600	－	－	－ 2	${ }^{-1}$	。	。	－	－	－	0	。	。	2	3	－3	
1600	1650	-1	。	2	${ }^{-1}$	\bigcirc	\bigcirc	。	。	。	0	\bigcirc	。	2	3	${ }^{3}$	
1650	1700	－	－	－	1	\bigcirc	－	－	0	－	－	－	。	2	3	${ }^{3}$	
1700	1750	${ }_{-1}$	。	2	${ }_{1}$	。	。	。	－	0	－	。	。	2	${ }^{3}$	${ }_{3}$	
1750	1800	-1	－1	－ 2	1	－	。	。	－	－	。	。	。	2	3	${ }^{3}$	
1800	1850	${ }_{-1}$	－ 1	2	.1	\bigcirc	\bigcirc	－	0	－	－	－	。	2	3	3	
1850	1900	${ }_{-1}$	${ }_{-1}$	2	${ }^{-1}$	。	。	。	－	－	－	－	。	－	－	－	Send
1900	1950	－	。	2	${ }_{-1}$	。	。	\bigcirc	。	－	－	。	。	2	${ }^{-3}$	${ }^{-3}$	
1950	2000	-1	0	2	1	－	。	。	－	－	－	－	0	2	${ }^{3}$	${ }^{-3}$	
2000	2050	-1	－	－	1	。	。	。	－	－	－	－	1	－	2	－	
2050	2100	-1	${ }_{-}$	2	1	－	.1	。	0	0	－	－	1	．	3	${ }^{-3}$	
2100	2150	-1	－2	2	1	。	${ }_{-}$	－	－	－	－	－	${ }_{-1}$	－	3	${ }^{-3}$	
2150	2200	－	2	2	1	。	2	\bigcirc	0	。	－	－	${ }_{1}$	－	4	4	
2200	2250	－	${ }^{3}$	－ 2	1	\bigcirc	2	－	－	－	－	－	1	．	4	4	
2250	2300	-1	${ }^{-3}$	－	1	\bigcirc	\cdots	－	0	－	－	－	1	1	4	4	
2300	2350	${ }_{-1}$	${ }^{-3}$	2	－ 1	\bigcirc	-2	。	。	。	。	。	1	－ 1	，	4	
2350	2400	${ }_{-1}$	，	2	${ }_{4}$	－	2	－	－	－	－	－	1	1	4	4	
2400	2450	-1	${ }^{-3}$	2	1	\bigcirc	2	－	0	－	－	－	1	1	4	4	
2450	2500	－	${ }^{-3}$	${ }^{2}$	1	－	2	。	－	－	－	。	1	－ 1	4	4	
2500	2550	${ }_{-1}$	${ }^{-3}$	2	－	。	2	。	。	。	。	。	． 1	．	4	4	
2550	2600	${ }_{-1}$	${ }^{-3}$	2	1	\bigcirc	2	。	。	－	－	－	1	－	4	4	
2600	2650	${ }_{-1}$	－ 2	－	1	\bigcirc	－ 1	－	0	－	－	。	1	1	3	${ }^{-3}$	
2650	2700	-1	2	2	－ 1	。	$\stackrel{-}{1}$	。	\bigcirc	－	。	。	1	－ 1	3	${ }^{-3}$	
2700	2750	${ }_{-}$	-2	2	.$^{-1}$	－	－	－	。	－	－	－	${ }_{-1}$	－	2	2	－
2750	2800	-1	－	2	${ }^{-1}$	－	－	－ 2	－	－	。	－	1	－	4	4	State forse
2800	2850	${ }_{-1}$	${ }_{-1}$	2	${ }_{-1}$	。	。	。	。	。	。	2	${ }^{1}$	－ 1	4	4	$\begin{aligned} & \text { SSE 275Kv line } \\ & \text { SSE Pylon at Ch } 2945 \\ & \hline \end{aligned}$
2850	2900	－	－1	2	－	。	。	。	。	－	。	2	1	－	4	4	为
2900	2950	－	${ }_{-}$	－ 2	.1	－	－	。	－	－	。	2	1	1	4	4	
2950	3000	－	${ }_{-1}$	2	－ 1	－	\bigcirc	。	。	。	。	2	1	－ 1	4	4	
3000	3050	－	－	2	－	。	－	－	－	－	。	。	－	－	4	4	Upotosm embenaknenton oneat
3050	3100	${ }_{-}$	${ }_{-1}$	2	${ }^{1}$	－	2	。	－	－	－	－	－ 1	－ 1	4	4	Upoto memembanmerton
3100	3150	－	${ }_{-}$	2	${ }_{-1}$	。	－	－	－	－	。	－	－	1	4	4	Upotosmembenameneton oneat
3150	3200	-1	${ }_{-1}$	2	－ 1	。	${ }^{3}$	。	－	－	。	。	－	－	－ 5	－ 5	Upoto minembankerto on peat
3200	3250	${ }_{-}$	－	2	${ }^{-1}$	－	${ }^{3}$	0	－	－	－	－	1	－	－ 5	． 5	Upotosm embaraknerte onear
3250	3300	-1	-1	2	－	－	3	－	。	－	－	－	－	－ 1	－ 5	s	Upotosmembankenertoneas
3300	3350	${ }_{-}$	－	2	${ }_{-}$	－	3	－	－	－	－	－	－	－	－ 5	s	Upotosmembasamererto peast
3350	3400	-1	-1	－ 2	.$^{-1}$	－	－	。	－	－	－	－	－	－	-2	－ 2	
3400	3450	-1	-1	2	${ }_{-1}$	－	－	\bigcirc	\bigcirc	－	－	－	－ 1	－	2	-2	
3450	3500	－ 1	${ }_{-}$	2	.$^{-1}$	\bigcirc	－	－	－	－	0	\bigcirc	－	－	2	－2	
3500	3550	${ }_{-1}$	－	2	－	。	－	－	－	－	－	－	－	－	2	2	
3550	3600	${ }_{-}$	${ }_{-}$	－	${ }^{-1}$	。	－	－	－	－	－	－	-1	－	2	－2	
3600	3650	-1	${ }_{-1}$	－ 2	－ 1	－	－	－	－	－	－	－	1	－	${ }^{-}$	${ }^{3}$	Usto 1 Smatutirock
3650	3700	-1	2	2	${ }^{-1}$	\bigcirc	－	－	－	－	－	－	－	－	${ }^{-3}$	－3	Upto 15m cut in rock
3700	3750	${ }_{-}$	2	2	.1	－	－	－	0	－	－	－	－	－	3	${ }^{3}$	Upto 15 Smutat rocok
3750	3800	－	－2	－ 2	.1	\bigcirc	－	0	0	－	－	\bigcirc	－	－	3	${ }^{-3}$	Upto 15 smatatrock
3800	3850 3900	－-1	$\stackrel{-2}{-2}$	$\stackrel{2}{2}$	－ 1	－	$\stackrel{-1}{ }{ }_{-1}$	－	\bigcirc	－	－	－	1	$\stackrel{-1}{ } \cdot$	${ }_{3} \cdot 3$	${ }^{-3}$	Usto 1.5 math n rock

Total Score
$=$ Alignment Score（Average of $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ and I$)+$ Geo
Score＋Structures Score＋Flooding Score（Average of L，
M and N）＋Utilities score＋Constructability Score
（Minimum value of $\mathrm{P} \mathrm{\& Q}$ ）$=$ Total of 6 scores for 6
categories
Then if total＜or equal to－9 then should be coloured red
because this represents possibility of 3 reds or 4 ambers
If tota is between -6 and 8 should be coloured
If total is between -3 and -5 sho

12050	12100	${ }_{-1}$	0	－ 2	${ }^{-1}$	－	${ }^{-1}$	0	－	0	0	－2	0	2	－	－	275 KV SSE line crossing pylon within 100 m of alignment at ch 11933 m and 12065 m Disruption due to partial online construction as alignment compressible soils
12100	12150	－1	－1	－ 2	${ }^{-1}$	。	－1	0	0	0	－	－	0	－2	4	4	Disruption due to partial online construction as alignment peast of the existing A96，potent
12150	12200	－1	。	－2	${ }_{-1}$	。	－1	。	。	。	。	－1	。	－2	． 5	． 5	Disruption due to partial online construction as alignment is positioned to the east of the existing A96，potential compressible soils Distribution mains crossings
12200	12250	－1	。	－2	－ 1	。	－	。	。	。	。	－ 1	。	－2	． 5	．	Disruption due to partial online construction as alignment is positioned to the east of the existing A96，potential compressible soils Distribution mains Distribution mains crossings
12250	12300	－1	0	－2	－ 1	－	－	0	0	0	0	－ 1	0	2	4	4	Distribution Mains cossings
12300	12350	－1	0	－2	－ 1	0	0	。	0	0	0	${ }^{-1}$	0	2	4	4	Distribution Mains cososings
12350	12400	－1	。	－2	${ }_{-1}$	。	。	。	。	。	。	－2	0	－2	－ 5	－ 5	Smal teamenet works combina
12400	12450	－1	0	－2	－ 1	。	\bigcirc	0	0	0	0	－ 1	0	－2	4	4	Distribution Manas cososings
12450	12500	－	0	－2	－ 1	－	0	。	0	0	0	－1	0	－2	4	4	Ostrturution Manans cosisings
12500	12550	－1	0	-2	－1	－	。	0	0	0	0	－ 1	0	2	4	4	Distribution Manans cosisings
12550	12600	－1	0	－2	－ 1	。	。	0	0	0	0	－1	。	2	4	4	Distribution Mains cososings
12600	12650	－1	0	2	${ }^{-1}$	。	。	。	0	0	0	${ }^{1}$	0	2	4	4	Ostritution Mains cousings
12650	12700	－1	0	－2	－1	0	\bigcirc	0	0	0	0	－1	0	－2	4	4	Distribution Mains cousings
12700	12750	－1	。	－2	${ }^{-1}$	。	。	${ }_{-1}$	。	。	。	－ 1	。	2	－ 5	． 5	Small cuvert combline w wht bendiness and disuppion
12750	12800	－1	0	－2	${ }^{-1}$	－	0	0	0	0	0	－ 1	0	2	4	4	Distribution Mains cousings
12800	12850	－	。	－2	－ 1	。	。	－	。	。	0	－	0	2	4	4	Distribution Mains cososiogs
12850	12900	－1	0	－ 2	－ 1	。	－	0	0	0	0	－ 1	。	2	4	4	Distribution Mains cososings
12900	12950	－1	0	－2	－ 1	。	。	－	0	。	－	－ 1	0	－ 2	4	4	Distribution Mains cososings
12950	13000																
13000	13050																

															$\begin{aligned} & \text { n } \\ & \text { On } \end{aligned}$		
							$\begin{aligned} & \text { Q } \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & \frac{n}{2} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$							$\begin{aligned} & \text {-1 } \\ & \stackrel{3}{3} \\ & \text { 言 } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & -1 \\ & \underline{\rightharpoonup} \\ & \underline{\rightharpoonup} \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { D } \\ & \text { h } \\ & \stackrel{0}{2} \end{aligned}$	
0	50	。	－	2	－	${ }^{-3}$	－	。	－	。	－	－	。	2	3	${ }^{-3}$	
50	100	。	。	2	－ 1	${ }^{-3}$	－	。	。	。	。	。	。	2	3	3	
100	150	。	。	2	1	－	－	－	。	。	。	。	。	2	3	${ }_{3}$	dita
150	200	。	。	2	－	3	－	。	。	。	－	。	。	2	${ }^{3}$	${ }_{-3}$	Sole
200	250	。	。	2	1	${ }^{3}$	－	。	－	－	。	。	。	2	${ }^{3}$	${ }^{3}$	
250	300	。	。	2	－ 1	${ }^{-3}$	－	。	。	。	。	。	。	2	${ }^{3}$	${ }^{3}$	dita
300	350	。	。	2	． 1	－ 3	。	－	。	－	－	。	。	2	3	3	
350	400	。	。	2	． 1	3	。	－	。	－	。	。	。	2	3	${ }_{3}$	
400	450	。	－	2	－	${ }^{3}$	。	。	。	－	。	。	。	2	${ }^{3}$	${ }^{-3}$	le
450	500	。	。	2	－	${ }^{3}$	－	。	－	－	0	1	。	2	4	4	Traftrscolanad Asees．
500	550	－	－	2	－	3	－	－	－	－	－	－	－	2	${ }^{3}$	${ }^{-3}$	
550	600	－	－	2	$\cdot 1$	${ }^{3}$	－	－	－	－	－	－	－	2	3	${ }^{3}$	
600	650	－	－	2	${ }^{-1}$	${ }^{-3}$	－	－	－	－	－	.$^{-1}$	－	2	4	4	Sse 3 Sulines．
650	700	－	。	2	.$^{-1}$	${ }^{-3}$	－	－	－	－	－	－	。	2	4	4	Sse 3swines．
700	750	－	－	2	－ 1	${ }^{-3}$	－	－	－	，	－	－ 1	－	2	4	4	Sse 33xNunes．
750	800	。	。	2	${ }^{-1}$	${ }^{-3}$	－	－	。	0	－	${ }_{-1}$	。	2	4	4	Sse 33x lines．
800	850	－	－	2	${ }_{-}$	${ }^{-3}$	－	－	－	－	－	－	。	2	4	4	SSE 3sNunes．
850	900	。	。	2	${ }^{-1}$	${ }^{3}$	－	－	－	－	－	${ }^{-1}$	－	2	4	4	Ssf 33vNines，
900	950	。	。	2	${ }_{-1}$	${ }^{-3}$	。	－	－	。	－	－	。	2	${ }^{3}$	${ }^{-3}$	
950	1000	。	。	2	－	${ }^{-3}$	－	。	。	－	。	。	。	2	3	${ }^{-3}$	
1000	1050	。	。	2	－ 1	${ }^{-3}$	。	0	。	。	。	。	。	2	${ }^{3}$	${ }^{3}$	Oismen
1050	1100	。	－	2	－	${ }^{-3}$	。	。	0	。	。	。	。	2	3	${ }^{3}$	den
1100	1150	。	。	2	． 1	${ }^{-3}$	－	。	。	。	。	。	。	2	${ }^{3}$	${ }_{3}$	Oita
1150	1200	。	。	2	${ }_{-1}$	${ }^{3}$	－	。	－	－	。	。	。	2	3	3	den
1200	1250	。	－	2	－	${ }^{-3}$	－	0	0	。	。	0	。	2	${ }^{3}$	3	Disruption due to Online construction ．Moderate Bendiness／slight hilliness．
1250	1300	－	－	2	${ }_{-1}$	${ }^{-3}$	。	－	－	－	。	。	。	2	${ }^{-3}$	${ }^{-3}$	Disruption due to Online construction ．Moderate Bendiness／slight hilliness．
1300	1350	。	。	2	${ }_{-1}$	${ }^{-3}$	－	。	。	。	。	2	。	2	－	．	
1350	1400	。	。	2	－	${ }^{3}$	。	0	0	。	0	2	。	2	5	－	
1400	1450	－	－	2	－	${ }^{-3}$	－	－	0	－	0	。	。	．	${ }^{3}$	${ }^{3}$	
1450	1500	。	－	2	－-1	${ }^{-3}$	－	－	0	－	－	－	－	2	3	${ }^{-3}$	
1500	1550	\bigcirc	${ }_{-}$	2	${ }^{-1}$	${ }^{-3}$	－	－	－	－	－	－	${ }^{-1}$	${ }^{1}$	－ 2	2	
1550	1600	－	－	－ 2	.$^{-1}$	${ }^{-}$	－	－	－	－	。	－	－	－	2	－2	
1600	1650	－	－	2	${ }^{-}$	3	－	－	0	－	－	－	－ 1	－	2	－ 2	
1650	1700	－	－ 1	2	－ 1	${ }^{-3}$	－	\bigcirc	－	－	。	－	－	－	2	2	
1700	1750	。	${ }_{-}$	2	－	${ }^{-3}$	－	0	0	－	－	。	1	1	3	${ }^{-3}$	Sill
1750	1800	\bigcirc	－2	2	1	${ }^{3}$	－	0	0	。	。	\bigcirc	． 1	－	4	4	
1800	1850	。	2	2	－	${ }^{-3}$	${ }_{-1}$	。	－	。	。	${ }_{-1}$	－	．	－	－	Sill
1850	1900	－	2	2	－	－3	－	。	－	－	。	－	1	－ 1	4	4	
1900	1950	。	2	2	${ }_{-1}$	－	－ 1	。	－	。	。	\bigcirc	${ }_{-1}$	－ 1	4	4	Sill
1950	2000	－	-2	2	－	${ }^{-3}$	－	。	。	。	。	。	1	－	4	4	Sill
2000	2050	。	2	2	${ }^{1}$	${ }^{3}$	－	－	0	\bigcirc	－	。	1	．	${ }^{-3}$	${ }^{-3}$	
2050	2100	－	${ }_{-1}$	2	.$^{-1}$	${ }^{3}$	－	－	－	－	－	－	．	1	2	2	
2100	2150	－	－	2	－	${ }^{-3}$	－	－	－	－	－	－	－	－	2	2	
2150	2200	－	－	2	－ 1	${ }^{3}$	－	－	－	－	。	－	－	－	-2	2	
2200	2250	－	－	2	－ 1	${ }^{-3}$	－	－	0	0	－	－	． 1	－ 1	2	－	
2250	2300	。	－	2	${ }^{-1}$	${ }^{3}$	－	－	－	－	－	－	－	－	2	－2	
2300	2350	。	0	2	－	${ }^{-3}$	。	0	0	－	。	－	1	－	2	2	
2350	2400	－	0	2	－ 1	3	－	－	－	－	－	－	${ }^{-1}$	－	2	－ 2	
2400	2450	－	${ }^{-1}$	2	4	3	－	－	－	－	。	－	－ 1	－ 1	2		
2450	2500	－	-1	2	－ 1	${ }^{-3}$	－	－	。	。	－	。	－	－ 1	-2	-2	
2500	2550	。	－ 1	2	－ 1	${ }^{-3}$	。	－	。	。	。	－	${ }^{1}$	－	2	2	
2550	2600	－	－	2	${ }^{-1}$	${ }^{-3}$	。	0	－	0	。	2	${ }_{-1}$	－	4	4	边
2600	2650	。	0	2	${ }^{-1}$	${ }^{-3}$	。	。	－	。	。	－ 2	${ }^{-1}$	．	4	4	边
2650	2700	。	${ }_{-1}$	2	－	${ }^{3}$	${ }^{-1}$	0	0	。	。	2	－	．	－	－	
2700	2750	。	－	2	${ }^{-1}$	3	${ }^{-1}$	。	－	0	0	－	－	．	－	6	273 mm diameter SGN high pressure gas main crosses alignment at this point．Alignment in large cutting up to 32 m deep．
2750	2800	－	2	2	4	${ }^{3}$	2	－	－	－	－	－ 2	－ 1	－	\rightarrow	－ 7	273 mm diameter SGN high pressure gas main crosses alignment at this point．Alignment in large cutting up to 32 m deep．
2800	2850	。	${ }^{-2}$	2	${ }_{.}$	${ }^{3}$	2	。	\bigcirc	－	－	2	－	－	7	7	
2850	2900	－	3	2	．	${ }^{-3}$	2	。	。	。	。	2	－	－	7	－	
2900	2950	。	${ }_{3}$	2	${ }_{1}$	${ }^{-3}$	2	。	。	－	－	－ 2	－	－	7	\rightarrow	273 mm diameter SGN high pressure gas main crosses alignment at this point．Alignment in large cutting up to 32 m deep．
2950	3000	。	${ }^{-3}$	－	1	${ }^{3}$	2	。	－	－	－	－	1	－ 1	7	\rightarrow	273 mm diameter SGN high pressure gas main crosses alignment at this point．Alignment in large cutting up to 32 m deep．
3000	3050	－	3	2	－ 1	${ }^{3}$	2	。	0	－	－	-2	－	－	7	-7	273 mm diameter SGN high pressure gas main crosses 32 m deep．
3050	3100	。	－ 3	2	1	${ }^{3}$	-2	－	0	－	0	－ 2	－ 1	－ 1	\rightarrow	\rightarrow	273 mm diameter SGN high pressure gas main crosses alignment at this point．Alignment in large cutting up to alignment 32 m deep 32 m deep
3100	3150	。	${ }^{-3}$	2	${ }^{-1}$	3	－	－	－	\bigcirc	0	－	－	－ 1	7	\rightarrow	273 mm diameter SGN high pressure gas main crosses alignment at this point．Alignment in large cutting up to 32 m deep．
3150	3200	－	－ 3	2	． 1	－ 3	－ 2	2	\bigcirc	0	\bigcirc	2	－ 1	－ 1	－	－	
3200	3250	。	${ }^{-3}$	2	－	${ }^{-3}$		－	。	。	。	－2	－	－	－	\rightarrow	273 mm diameter SGN high pressure gas main crosses alignment at this point．Alignment in large cutting up to 21 mdee ．
3250	3300	－	－3	2	1	${ }^{3}$	2	－	－	－	－	－	${ }^{1}$	－	－	．	Silftromoderate utrine
3300	3350	\bigcirc	-2	2	${ }_{-}$	${ }^{-3}$	$\stackrel{2}{2}$	－	\bigcirc	\bigcirc	\bigcirc	。	－	－	－	－5	Ssiot tomomeare unting
3350	3400	\bigcirc	2	2	． 1	${ }^{3}$	$\stackrel{-}{-}$	－	\bigcirc	0	0	－	． 1	－	4	4	Supht omodesere uturing
3400	3450	0	2	2	${ }^{-}$	${ }^{3}$	${ }_{-}$	\bigcirc	0	0	0	。	－	－	4	4	Subtr tomederate utins．
3450	3500	。	－2	2	－-1	${ }^{-3}$	${ }^{-1}$	－	－	－	－	－	－	－	4	4	Subtr tomoderate euthe
3500	3550	－	－	2	${ }^{-}$	${ }^{3}$	\cdots	－	－	－	－	－	${ }^{-1}$	．	4	4	Subtromoderate eutros
3550	3600	－	-2	2	${ }^{-1}$	${ }^{3}$	－	－	－	－	－	－	${ }^{-1}$	．	－ 3	3	
3600	3650	－	$-_{1}$	2	.$^{-1}$	3	－	－	－	0	－	－	${ }^{-1}$	－	－ 2	－ 2	
3650	3700	－	－	2	－ 1	－3	。	。	－	－	。	。	－	－	－	2	
3700	3750	。		2	．	－ 3	。	。	。	。	。	。	${ }_{-1}$	－	2	2	

3750	3800	－	－			3											
3800	3850	。	－	2	－	${ }^{3}$	－	。	。	－	－	。	。	2	3	3	
3850	3900	。	－	2	1	3	－	。	－	－	－	－	。	2	3	3	Combene
3900	3950	。	－	2	－	3	。	－	－	－	－	。	。	2	${ }^{3}$	3	
3950	4000	。	．	2	－	3	。	－	－	－	－	。	。	2	3	3	
4000	4050	。	－	2	1	3	。	。	。	－	－	。		2	3	3	
4050	4100	。	－	2	1	3	－	－	－	－	－	－	。	2	3	3	Iomele
4100	4150	。	－	2	1	3	－	－	－	－	－	－	。	2	3	${ }^{-3}$	
4150	4200	。	－	2	1	${ }^{3}$	－	－	－	－	－	－	。	2	3	3	
4200	4250	。	\bigcirc	2	－	${ }^{3}$	－	－	．	－	－	\bigcirc	。	2	3	${ }^{3}$	
4250	4300	－	－	2	1	3	。	－	－	－	－	－	。	2	，	3	
4300	4350	－	－	2	－	3	－	。	－	－	－	。		2	${ }^{3}$	．	Comen
4350	4400	－	4	2	－	${ }^{3}$	－	。	－	，	－	。	。	2	3	3	Comen
4400	4450	。	－	2	1	3	－	－	－	－	－	。	。	2	3	3	
4450	4500		1	2	1	．	。	。	。	。	。	2	。	2	S		Somele
4500	4550	。	4	2	1	${ }^{3}$	－	－	．	．	．	2	－	2	s	－	
4550	4600	。	－	2	1	3	－	－	\bigcirc	－	－	。	。	2	3	${ }_{3}$	
4600	4650	－	－	2	1	3	－	－	－	－	－	－	。	2	3	3	为
4650	4700	－	－	2	1	3	－	－	－	－	－	－	。	2	3	3	
4700	4750		。	2	．	．	。	。	。	。	。	2	。	2	．		Comele
4750	4800	－	－	2	1	3	－	－	－	－	－	2	。	2	，		（eamen
4800	4850	。	－	2	1	3	－	。	0	－	－	。	。	2	3	${ }_{3}$	
4850	4900	－		2	1	3	－	。	．	－	－	。	。		3	3	为
4900	4950	－	－	2	1	3	－	－	－	－	－	－	。	2	3	3	Comen
4950	5000	－	－	2	1	3	－	－	－	－	－	－	。	2	3	3	Combeientiber
5000	5050	。	－	2	1	3	。	－	－	－	－	。	。	2	3	3	Combeion orber
5050	5100	。	－	2	1	3	。	－	－	－	。	－	0	2	3	3	Combeite orben
5100	5150	。	。	2	－	${ }^{3}$	－	－	－	－	－	－	。	2	3	3	Combeion orberde
5150	5200	。	。	2	1	．	。	。	－	－	－	。	。	2	3		Combeias of tema
5200	5250	－	－	2	1	3	－	－	－	－	－	－	－	2	3	3	
5250	5300	－	\bigcirc	2	－	3	－	－	－	－	\bigcirc	－	。	2	3	3	
5300	5350	－	0	2	1	3	－	－	\bigcirc	－	－	－	。	2	－	，	
5350	5400	－	－	2	1	3	．		－	\bigcirc	－	。	。		3	3	
5400	5450		0	2	1	3	－	。	。	－	－	。	。	2	4	4	
5450	5500	－	－	2	1	3	1	－	－	－	－	－	。	2	4	4	
5500	5550	。	。	2	1	3	－	－	－	－	－	－	。	2	3	3	
5550	5600	。	。	2	－	3	－	。	－	－	－	－	。	2	3	3	Combete
5600	5650	－	－	2	1	${ }^{3}$	－	－	－	－	－	－	。	2	3	3	
5650	5700	－	\bigcirc	2	－	3	－	－	－	－	\bigcirc	－	。	2	3	，	Comen
5700	5750	。	．	2	－	3	。	－	－	－	－	。	。		－	3	
5750	5800	。	。	2	1	3	。	。	。	。	。	2	。	2	S	－	273 mm diameter SGN high pressure gas main crosses to online construction．
5800	5850	。	－	2	${ }_{-1}$	3	4	－	－	－	－	2	。	－	．	6	
5850	5900		－	2	．		－	－	。	。	。		。	2	－		
5900	5950	－	－	2	1	3	－	－	\bigcirc	－	－	－	。	2		－	
5950	6000	－	－	2	1	${ }^{3}$	－	－	－	\bigcirc	－	－	。	2	4	4	Semen
6000	6050	。	。	2	1	3	－	。	。	－	－	。	。	2	4	4	
6050	6100	－	－	2	1	3	－	－	－	－	－	1	。	2	．	－	
6100	6150	－	－	2	1	${ }^{3}$	－	－	－	－	－	1	。	2	S	5	Semen
6150	6200	。	－	2	1	3	1	－	－	－	－	－	。	2	4	4	
6200	6250	。	。	2	1	3	．	－	－	－	－	－	。	2	4		
6250	6300	。	－	2	1	3	－	－	－	－	－	－	2	1	－	－	
6300	6350	。	－	2	1	3	1	－	－	－	－	－	2	1	\checkmark	－	
6350	6400								。	。					，		Earthworks cutting up to 45 m deep which will generate major earthwork quantities．Unidentified ground conditions at this location combined with difficult access
6400	6450													－			
		\bigcirc	3	2	1	3	2	－	－	－	－	－	2	1	－	－	
6450	6500																
	6550													1		－	
6500	6550												2				
6550	6600																
		－	3	2	1	${ }^{3}$	：	2	－	－	－	－	2	1	－	－	
6600	6650																
		－	：	2	－	3	－	－	－	－	－	－	2	－	－	－	
6650	6700																
6700	6750																
		－							－	－	－	－	2	1	．	6	
6750	6800																
		－											：	－		－	conditions at this location combined with difficult access and likely disruption．
6800	6850												，	，			
6850	6900												2				
		－	3	2	－	3	2	0	\bigcirc	－	－	－	2	1	－	－	
6900	6950																
		－	3	2	1	3	2	－	－	－	－	－	2	－	－	－	come
6950	7000																
7000								－	－				－	1	－	－	
7000	7050	－	3	2	－				－	－	－						
7050	7100									－			2				
		－	3	2	－	3	2	－	－	－	－	－	2	－	－	－	
7100	7150																
		。	3	2	1	3	3	－	－	\bigcirc	－	－	：	1	\rightarrow	，	
7150	7200																
		－	3	2	1	3	3	－	－	－	－	－	2	－	7	，	
7200	7250																
7250		－	3	2	1	3	3	－	－	－	－	－	2	1	7	，	
7250	7300	－					3	－	－	－	－	－	2	－	\rightarrow	．	
7300	7350																
		－	3	$=$	－	3	3	－	－	－	－	－	．	－	\rightarrow	．	
7350	7400																
							－	。	－	－	－	－	2	－	\rightarrow	，	
7400	7450																

7450	7500	－	，	2	1	，	，	－	－	－							Earthworks cutting up to 59 m deep which will generate major earthwork quantities．Unidentified ground conditions at this location combined with difficult access
7500	7550																
		－	3	2	1	${ }^{3}$	3	－	－	－	－	－	2	－	7	．	
7550	7600																
		－	3	2	1	3	3	－	－	－	－	－	2	1	7	，	
7600	7650	－	，	2				－	－	－							
7650	7700	。						．	．	。	。	－					
		－	3	2	1	3	2	－	－	－	－	。	2	1	－	－	men
7700	7750																
		－	3	2	1	3	2	－	－	－	－	－	2	－	－	－	
7750	7800																
		－	3	2	．	3	2	－	－	－	－	。	2	1	－	－	Sele
7800	7850																
		－	3	2	1	${ }^{3}$	2	－	－	－	－	。	2	1	－	－	
7850	7900	－	2	2	－	3	。	－	－	－	－	。		1	4		
7900	7950	－	2	2	1	3	－	。	。	。	－	－	2	1	4	4	
7950	8000	。	－	2	1	${ }^{3}$	。	－	－	－	－	－	：	1	3	3	
8000	8050	－	－	2	1	${ }^{3}$	。	。	－	。	。	。	． 2	，	3	3	Mmaremben
8050	8100	－	－	2	4	${ }^{3}$	1	－	－	。	－	－	－	1	4	4	
8100	8150	－	－	2	1	3	1	－	－	－	－	\bigcirc	2	1	4	4	
8150	8200	。	－	2	－	3	－	2	－	。	－	。	－	1	－	－	
8200	8250	。	－	2	．	3	－	。	。	－	－	－		－	－	．	
8250	8300		－	－	，	，	，	－	－	，	－	－			，		
8300	8350										－						
8350	8400	－	1	2	1	－ 3	1	－	－	－	。	－	2	1	4	4	
		－	1	2	1	3	1	－	－	－	－	－	2	1	4	4	
8400	8450			2	－	3			。	。	。	。		．	4		
8450	8500																
8500	8550	。	－	2				－	－	－	－	－					
		－	－	2	1	3	1	。	－	－	－	－	2	－	4	4	
8550	8600	。	2	2	－	${ }^{3}$	－	－	－	－	－	。	：	1	．	．	
8600	8650		，	2	，	，	，	，		，	，	－					
8650	8700							－	－	－	－	－			5	s	
		－	2	2	1	3	－	－	－	－	－	－			s	5	
		－	2	2	1	3	1	－	－	－	－	－	2	－	5	．	
8750	8800	－	2	2	1	3	－	－	－	－	－	。	2	－	5	．	
8800	8850					，				，	，	－		，	，		
8850	8900	。	－	2	－	${ }^{3}$	－	－	－	\bigcirc	。	。	2	1	3	3	Nomen
8900	8950	－	${ }_{-}$	2	1	3	－	－	－	－	－	－	2	＋	3	3	comen
8950	9000	－	－	2	4	3	－	－	－	－	－	。	2	．	3	3	
9000	9050	－	－	2	1	3	－	－	－	。	。	。	2	－	3	3	comoteme
9050	9100																
9100	9150																
9150	9200	－	$=$	－	1	3	2	3	－	－	－	。	2	1	9	－	
		－	2	2	4	3	2	3	－	\bigcirc	－	－	2	1	，	，	
9200	9250																
		－	2	－		3	2	3	－	－	－	。		1	，	．	
9250	9300																
		。	3	－ 2	1	3	${ }^{3}$	3	－	0	－	－	：	－	10	10	
9300	9350																
										－	－	－			10	10	\％ex
9350	9400																
											。	。	．	1	10	． 10	
9400	9450																
																	licker
		－	3	：	－	－	－	3	－	－	。	－	2	1	10	． 10	
9450	9500																
		－	3	－		3	2	3	－	\bigcirc	－	－	2	－	，	，	
9500	9550																
		－				3	－	3	－	－	－	－	2	－	，	．	
9550	9600																
9600	9650	－	－	2	1	${ }^{3}$	\bigcirc	－	\bigcirc	－	－	－	。	2	3	3	
9650	9700	－	－	2	1	3	－	－	－	－	－	${ }^{-1}$	。	2	4	4	Taftscoternd Aseses
9700	9750	－	－	$\stackrel{2}{2}$	${ }_{-}$	3	－	－	－	\bigcirc	。	－	。	2	3	3	
9750	9800	－	${ }^{-}$	2	－	3	－	。	－	－	－	－	－	2	3	3	
9800	9850	－	－	2	－	${ }^{3}$	。	。	－	－	。	－	－	2	3	3	
9850	9900	－	1	2	1	3	－	－	－	－	－	－	－	2	4	4	
9900	9950	。	2	2	－	3	\pm	－	－	。	－	。	。	2	6	－	Some
9950	10000	\bigcirc	2	2	．	${ }^{3}$	． 1	．	－	－	。	。	。	2	－	－	
10000	10050	。	2	2	－	3	。	－	－	。	。	。	。	2	－	－	
10050	10100	－	－	2	1	3	。	－	－	－	－	－	。	2	4	－	Somele
10100	10150	。	1	2	1	${ }^{3}$	。	。	－	－	－	。	。	2	3	3	
10150	10200	－	－	2	，	3	。	－	－	。	－	。	。	2	${ }^{3}$	3	Mree mement
10200	10250	。	－	2	1	3	。	－	－	。	。	。	。	2	3	${ }^{-3}$	
10250	10300	。	－	2	－	3	。	－	－	－	－	－	。	2	3	，	
10300	10350	。	－	2	－	3	－	－	－	0	－	－	。	2	3	3	
10350	10400	－	－	2	1	3	－	－	－	－	－	－	。	2	4	4	
10400	10450	－	－	2	1	3	1	－	－	－	－	－	。	2	4	4	
10450	10500	－	－	2	1	3	．	－	－	－	－	－	。	2	4	4	
10500	10550	。	．	2	－	${ }^{3}$	－	。	－	－	。	。	。	2	4	4	
10550	10600	。	。	2	－	3	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	2	4	${ }_{4}$	
10600	10650	。	－	2	－	3	－	－	－	。	－	。	。	2	4	4	
10650	10700	－	－	2	－	3	－	。	－	－	－	。	。	2	4	4	
10700	10750	。	－	2	－	${ }^{3}$	－	－	\bigcirc	－	－	。	。	2	4	4	
10750	10800		－	2	－	3	－	－	－	－	－	。	。	2	4	4	
10800	10850																

10850	10900	0	－1	－ 2	－1	${ }^{-3}$	－2	0	0	0	0	－	0	2	－	－	$\begin{aligned} & \text { Moderate embankment due to alignment partially offline } \\ & \text { combined with compressible ground and potential traffic } \\ & \text { disruption during construction. } \end{aligned}$
10900	10950	0	－2	－ 2	－ 1	－3	－ 2	－	0	0	0	0	0	2	6	－	Moderate embankment due to alignment partially offline disruption during construction
10950	11000	。	－2	－2	1	－	2	。	0	。	。	0	。	2	．	－	Moderate embankment due to alignment partially offline combined with compressible ground and potential traffic
11000	11050	。	－2	－2	－	${ }^{-3}$	－1	。	0	。	0	0	0	． 2	－5	． 5	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11050	11100	。	－-1	－2	－ 1	${ }^{-3}$	${ }_{-1}$	。	0	－	0	－	0	2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11100	11150	。	${ }_{-1}$	－ 2	－	－3	${ }_{-1}$	。	。	。	0	。	。	－ 2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11150	11200	。	。	－2	－ 1	${ }_{-3}$	${ }_{-1}$	。	0	0	0	。	0	－2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11200	11250	0	－1	－ 2	${ }_{-1}$	－3	－ 1	0	0	0	0	－	0	2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11250	11300	。	－1	－ 2	${ }_{-1}$	${ }^{-3}$	－ 1	0	0	0	0	0	0	2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11300	11350	。	${ }_{-1}$	－ 2	${ }_{-1}$	${ }_{-3}$	－1	。	0	。	。	。	。	2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11350	11400	。	。	－2	.$_{1}$	${ }^{-3}$	${ }_{-1}$	。	。	0	0	。	0	－ 2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11400	11450	。	。	－2	${ }_{-1}$	－3	－ 1	。	0	。	。	。	。	2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11450	11500	。	。	－2	${ }^{-1}$	－3	－1	0	0	0	0	\bigcirc	。	－2	4	4	Moderate embankment and cuttings due to alignment partially offline combined with compressible ground and potential traffic disruption during construction．
11500	11550	。	。	－2	${ }^{-1}$	${ }_{-3}$	${ }_{-1}$	。	0	。	0	${ }_{-2}$	0	－2	－	－	
11550	11600	。	。	－2	${ }_{-1}$	－3	－	。	0	。	。	－2	。	－2	－	－	
11600	11650	。	。	－2	${ }^{-1}$	${ }^{-3}$	－	0	0	0	0	－	0	2	6	－	
11650	11700	。	－ 1	－2	${ }^{-1}$	${ }_{-3}$	－ 1	。	0	。	0	${ }_{-2}$	。	－2	－	－	
11700	11750	。	－1	－2	－ 1	－3	－1	0	0	0	0	${ }_{-1}$	0	2	－	－	Disruption due to partial online construction as alignment is positioned to the east of the existing A96，potential compressible soils．Distribution mains crossings．
11750	11800	。	。	－2	－ 1	－3	－	。	－	0	0	－1	0	2	4	－	Oistributo Manan cossings．
11800	11850	－	0	－2	－1	${ }^{-3}$	0	0	0	0	0	－1	0	2	4	6	Oistribution Mans cososings．
11850	11900	。	0	－2	－ 1	${ }^{-3}$	－	0	0	0	0	－1	0	2	4	6	Distribution Mains cosisings．
11900	11950	。	0	－2	－ 1	－3	－	0	0	0	0	－ 1	0	2	4	${ }^{-}$	Oistriutuon Mains cosisings．
11950	12000	。	。	－2	－1	${ }^{-3}$	。	。	。	。	。	－2	0	2	－ 5	${ }_{-}$	
12000	12050	。	0	－2	－1	－3	－	0	0	0	0	－ 1	0	2	4	${ }^{6}$	Obstriution Manas cosisings．
12050	12100	。	0	－2	－ 1	${ }^{-3}$	0	0	0	0	0	－ 1	0	2	4	6	Obstriutuon Mains cosisios．
12100	12150	。	。	－2	－ 1	${ }^{-3}$	。	。	。	0	0	－ 1	0	2	4	${ }^{6}$	Oistribution Mans cosisinge．
12150	12200	。	0	－2	－ 1	${ }^{-3}$	－	。	0	0	0	－ 1	0	2	4	6	Obstribution Mains cososings．
12200	12250	。	0	－2	－ 1	${ }^{-3}$	－	。	0	0	0	－	0	2	4	－	Distribution Manas cososios．
12250	12300	。	0	－2	－ 1	${ }^{-3}$	。	。	－	0	。	－ 1	0	2	4	－	OStributon Mains cosisins．
12300	12350	。	。	－2	－ 1	${ }^{-3}$	。	${ }_{-1}$	－	。	。	－ 1	。	－2	－ 5	－	Smal culuer comblined with bendiness and disprotion．
12350	12400	。	0	－2	－ 1	${ }^{-3}$	－	。	0	0	0	－	。	2	4	6	Distribution Mains cososings．
12400	12450	。	0	－2	－ 1	－ 3	0	。	0	0	0	－	0	2	4	－	Obstriution Mains cosisings．
12450	12500	。	0	-2	－	－3		－	。	0	0	${ }^{-1}$	－	－2	4	－	Ostrtubuton Mains cossings．
12500	12550																

Rules
Total Score
$=$ Alignment Score（Average of E，F，G，H and I）+ Geo
Score＋Structures Score＋Flooding Score（Average of L ，
（Minimum value of $P \& Q$ ）$=$ Total of 6 scores for 6
categories
Then if total＜or equal to－9 then should be coloured red
because this represents possibility of 3 reds or 4 ambers
since this could represent 2 reds or $3 / 4$ ambers．
f total is between -3 and -5 sho

															$\begin{aligned} & n \\ & \frac{0}{\infty} \end{aligned}$		
									$\begin{aligned} & \text { 끔 } \\ & \frac{0}{2} \\ & \text { 믈. } \end{aligned}$			$\stackrel{c}{\text { 联 }}$			$\begin{aligned} & -1 \\ & \underset{\sim}{\mathbf{O}} \end{aligned}$		2 3 $\frac{3}{3}$ $\stackrel{3}{3}$
0	50	0	0	0	${ }^{-1}$	${ }^{3}$	\bigcirc	－	\bigcirc	0	－	－	0	2	${ }^{3}$	3	Oonine cosstration disuspion．
50	100	－		。	．	${ }^{-3}$	－	。	－	－	。	。	。	－ 2	${ }^{3}$	${ }^{-3}$	Online constration disurution．
100	150	－	－	－	－	${ }^{-3}$	－	。	。	－	－	－	。	2	${ }^{3}$	${ }^{-3}$	Onine constrationd dsupution．
150	200	。	－	－	${ }_{-}$	${ }^{3}$	。	。	－	。	。	。	。	2	${ }^{3}$	${ }^{3}$	Online constration disurpion．
200	250	－	－	－	－	${ }^{3}$	－	－	－	－	－	－	－	2	3	3	Onlie constractoon dsunplon．
250	300	－	－	－	${ }_{-}$	${ }^{-3}$	－	－	。	－	。	－	。	2	－ 3	${ }^{-3}$	Online constration disurpion．
300	350	－	－	－	.1	${ }^{3}$	－	－	－	。	－	－	－	2	3	${ }^{3}$	Onine coastaction dssupation．
350	400	－	－	－	${ }^{1}$	${ }^{-3}$	－	。	－	。	。	－	。	2	${ }^{-3}$	3	Online constration disupution．
400	450	。	－	－	${ }^{-1}$	${ }^{-3}$	。	。	－	－	。	。	。	2	${ }^{3}$	3	Online constration disurpion．
450	500	－	－	－	${ }^{-1}$	${ }^{-3}$	－	－	－	－	－	． 1	－	2	4	4	Trafic cocoland asses．
500	550	－	－	－	－	${ }^{-3}$	－	－	－	－	－	。	。	2	${ }^{-3}$	${ }^{-3}$	Online costratcion disurpion．
550	600	－	－	－	－	${ }^{-3}$	－	－	。	－	。	－	－	2	3	${ }^{-3}$	Online cosstration disuntion．
600	650	－	－	－	－	${ }^{3}$	－	－	－	－	－	－	。	2	4	4	Sse 3sk ines．
650	700	－	－	－	.$^{-1}$	${ }^{-3}$	。	。	。	－	－	.$^{-1}$	0	2	4	4	Ste 3swines．
700	750	－	－	－	${ }^{1}$	${ }^{-3}$	－	。	－	－	－	． 1	－	2	4	4	Sse 3xwines．
750	800	－	－	－	－	${ }^{-3}$	。	。	－	。	。	－	。	2	4	4	Sse 330 mines．
800	850	－	－	－	－	${ }^{-}$	－	－	－	－	－	－	－	2	4	4	Sse 3salnes．
850	900	－	－	－	－	3	。	。	－	－	－	． 1	。	2	4	4	Sse 3xw lnes．
900	950	－	－	－	－	${ }^{-3}$	。	－	。	－	－	－	。	－2	${ }^{-3}$	－3	Onine constatationdsusprion．
950	1000	－	－	－	${ }^{-1}$	${ }^{-3}$	－	－	。	－	。	。	。	2	${ }^{-}$	${ }^{-3}$	Online constration disurution．
1000	1050	－	－	－	－	${ }^{3}$	－	。	。	。	－	－	－	2	${ }^{-3}$	3	Onine constrationd disprion．
1050	1100	0	\bigcirc	－	－	${ }^{3}$	－	－	－	－	。	－	。	2	${ }^{-3}$	${ }^{-3}$	Online constration disurpion．
1100	1150	－	-1	0	${ }^{-}$	${ }^{-3}$	－	。	－	－	。	－	。	－	${ }^{3}$	${ }^{-3}$	Online constatation disurpion．
1150	1200	－	－	－	－	${ }^{-3}$	\bigcirc	－	－	－	－	－	－	2	${ }^{3}$	${ }^{-3}$	Online constration disurition．
1200	1250	－	－	。	${ }^{-}$	${ }^{-3}$	。	。	－	。	。	。	。	2	${ }^{3}$	${ }^{3}$	Online constration disuprion．
1250	1300	－	-1	－	${ }^{-1}$	${ }^{-3}$	－	－	。	－	。	。	－	－	2	－	
1300	1350	。	${ }^{-1}$	－	1	${ }^{-3}$	－	。	。	。	。	2	－	－	4	4	Serse
1350	1400	。	${ }^{-1}$	－	－ 1	${ }^{-3}$	${ }^{-1}$	\bigcirc	。	。	。	2	1	-1	－	${ }^{5}$	Sen
1400	1450	0	2	0	.1	${ }^{-3}$	－	。	0	0	0	2	－ 1	${ }_{-1}$	．	－	
1450	1500	。	-2	。	${ }^{1}$	3	－	。	－	－	－	－	${ }_{1}$	1	${ }^{-3}$	3	
1500	1550	。	－2	。	－	${ }^{-3}$	－	－	－	－	。	。	1	1	3	${ }^{-3}$	Natemen
1550	1600	0	2	0	1	－3	${ }^{-1}$	－	0	0	0	。	1	1	${ }^{-3}$	3	
1600	1650	0	2	0	－	－ 3	2	－	－	\bigcirc	\bigcirc	－	1	－1	4	4	
1650	1700	。	2	－	${ }_{1}$	3	2	－	。	。	－	。	－ 1	－	4	4	
1700	1750	0	${ }^{-3}$	0	1	${ }^{3}$	2	。	。	－	。	。	1	1	4	4	Alement nembay
1750	1800	\bigcirc	3	\bigcirc	${ }_{-}$	3	2	－	－	－	－	。	－	－1	4	4	
1800	1850	\bigcirc	3	。	1	3	－2	。	－	－	－	． 1	－ 1	－	－	－	
1850	1900	。	，	。	${ }_{-1}$	－	2	。	－	。	。	。	－	－1	4	4	
1900	1950	0	3	0	1	${ }^{-3}$	2	0	\bigcirc	0	－	－	－	1	4	4	
1950	2000	－	3	\bigcirc	1	3	-2	－	－	－	－	－	1	－	4	4	
2000	2050	。	${ }^{3}$	。	1	${ }^{3}$	${ }_{-1}$	－	\bigcirc	0	\bigcirc	－	1	－	3	${ }^{3}$	
2050	2100	0	2	\bigcirc	1	${ }^{3}$	${ }^{-1}$	。	－	－	0	。	－	1	3	3	
2100	2150	－	2	－	－	${ }^{-3}$	－	－	－	。	。	。	－ 1	－1	2	－2	
2150	2200	0	${ }^{-1}$	－	－	${ }^{-3}$	－	－	－	。	。	－	－	1	2	－ 2	
2200	2250	－	－	－	${ }^{-1}$	${ }^{3}$	。	。	－	－	。	。	－	1	－2	2	
2250	2300	－	0	0	－	－ 3	。	。	－	－	－	。	0	－ 2	－ 3	${ }^{-3}$	
2300	2350	－	。	－	－	－ 3	－	。	－	。	。	。	0	2	${ }^{3}$	${ }_{3}$	Ond
2350	2400	。	${ }_{-1}$	。	${ }_{1}$	${ }^{-3}$	。	。	。	。	。	。	。	2	3	${ }^{-3}$	
2400	2450	。	－	－	－	－ 3	－	－	0	。	。	。	。	－2	${ }_{-3}$	${ }_{-3}$	
2450	2500	。	${ }_{-1}$	。	\pm	${ }^{-3}$	。	。	。	。	。	。	。	2	${ }_{3}$	${ }_{-3}$	Ond
2500	2550	。	。	。	${ }_{1}$	${ }^{-3}$	。	。	。	。	。	。	。	2	${ }_{3}$	${ }_{3}$	Onl
2550	2600	。	。	。	－	${ }^{3}$	。	。	。	。	。	。	。	2	${ }_{3}$	${ }^{-3}$	Ond
2600	2650	0	－-1	0	${ }_{-1}$	－ 3	－	－	－	\bigcirc	－	－	－ 1	－	2	2	
2650	2700	－	－ 1	－	${ }^{-1}$	3	－	－	0	－	－	－	． 1	－ 1	2	2	
2700	2750	－	${ }^{-1}$	－	.$^{-1}$	${ }^{3}$	－	－	－	－	。	－	${ }^{-1}$	－	2	2	
2750	2800	－	－	－	－	${ }^{-3}$	－	－	－	－	－	－	${ }^{-1}$	－	2	2	
2800	2850	－	－	－	－ 1	${ }^{-3}$	－	－	－	－	－	－	－	1	-2	-2	
2850	2900	－	－	－	－	${ }^{3}$	－	－	－	－	－	－	${ }^{-1}$	－	-2	－2	
2900	2950	－	－ 1	－	${ }^{1}$	\cdots	－	－	－	－	－	－ 2	${ }^{1}$	1	4	4	
2950	3000	－	－ 1	0	1	3	－	－	－	－	－	\bigcirc	－ 1	－	2	2	
3000	3050	－	${ }_{-}$	－	－	${ }^{-3}$	－	－	。	－	－	－	－	－	2	2	
3050	3100	－	－	－	${ }^{-1}$	${ }^{3}$	。	－	－	－	－	。	－ 1	1	2	2	
3100	3150	－	-1	－	－	${ }^{3}$	－	－	－	－	－	。	－	－	-2	2	
3150	3200	－	${ }_{-1}$	。	－ 1	－3	－	－	－	－	－	－	－	${ }^{-1}$	2	-2	
3200	3250	－	－	－	${ }^{-}$	${ }^{-3}$	－	－	－	－	－	。	${ }^{-1}$	－	2	－2	
3250	3300	－	－	－	－	${ }^{-3}$	－	－	－	－	－	－	． 1	－	-2	2	
3300	3350	－	－	－	－	${ }^{3}$	－	－	－	－	－	－	－	－	2	2	
3350	3400	－	0	－	.$^{-}$	${ }^{-3}$	。	。	。	－	。	。	－	1	－2	－2	
3400	3450	\bigcirc	－	。	－ 1	${ }^{3}$	－	。	－	－	－	－	${ }^{-1}$	1	2	2	
3450	3500	－	－ 1	。	${ }^{-}$	${ }^{-3}$	－	－	。	－	。	。	${ }^{-1}$	1	2	－ 2	
3500	3550	－	${ }_{-1}$	－	－	${ }^{-3}$	－	－	－	－	－	－	－	－	-2	2	
3550	3600	－	${ }_{-}$	－	－	${ }^{-3}$	－	－	。	－	－	－	${ }^{-1}$	－	2	2	
3600	3650	－	$\cdot 1$	－	1	${ }^{-3}$	－	－	－	－	－	－	${ }^{-1}$	1	-2	-2	
3650	3700	－	${ }_{-1}$	\bigcirc	－	3	\bigcirc	0	0	0	\bigcirc	\bigcirc	${ }^{-1}$	－	2	－	
3700	3750	0	-1	\bigcirc	${ }_{-}$	${ }^{-3}$	\bigcirc	。	。	－	0	\bigcirc	1	1	2	-2	
3750	3800	\bigcirc	－	－	${ }_{-1}$	3	－	。	－	－	－	－	－ 1	－	2	2	
3800	3850	－	。	。	－	${ }^{-3}$	－	－	。	－	－	－	－	－	2	2	
$\begin{array}{r}3850 \\ 3900 \\ \hline\end{array}$	3900 3950	－	${ }_{-1}$	。	－-1	${ }_{-}^{-3}$	－	\bigcirc	－	\div	－	－	－	1	-2	－2	

8750	8800	－	－	－	1	3	3	3	－	－	－	－	3	1	40	．	
8800	8850	。	${ }^{3}$	。	．	${ }_{3}$	${ }^{3}$	${ }^{-3}$	。	。	0	。	3	．	10	．	Major structure over the Glen Water．Overall rating raised to major adverse impact due to potential major geotechnical impacts associated with structure \square
8850	8900	。	3	。	－	3	。	－	。	。	－	。	3	．	\rightarrow	．	
8900	8950	－	－ 1	－	． 1	${ }^{3}$	－	－	－	－	\bigcirc	－	3	－	4	4	Offratut ostratestonsacess
8950	9000	。	－	。	．	3	－	。	．	。	。	。	3	1	s	．	
9000	9050	。	－	。	－	3	－	。	。	。	。	。	3	．	－	．	
9050	9100	。	3	。	－	3	．	。	。	。	。	。	3	．	，	．	
9100	9150	。	3	。	1	${ }^{3}$	${ }^{3}$	。	。	。	。	。	3	．	，	．	Earthworks cutting up to 83 m deep located in rock． Potential tunnel location -1150 m long．Difficult construction access and likely disruption．Overall rating raised to major adverse impact due to potential major geotechnical impacts．
9150	${ }^{9200}$	。	．	。	－	${ }^{3}$	3	。	。	。	。	。	－3	1	－	．	
9200	9250	。	3	。	－	3	3	。	。	。	。	。	3	－	－	．	
9250	${ }^{9300}$	。	3	。	－	3	3	。	。	。	－	。	3	．	，	．	
9300	9350	。	3	。	，	3	${ }^{3}$	。	。	。	。	。	3	．	，	．	
9350	${ }^{9400}$	。	3	。	1	${ }^{3}$	3	。	。	。	。	。	3	1	7	\checkmark	
9400	9450	。	3	。	，	3	${ }^{3}$	。	。	。	。	。	3	－	－	．	
950	${ }^{9500}$	。	3	－	1	${ }^{3}$	3	－	－	－	－	－	3	1	7	－	
9500	9550	。	${ }^{3}$	。	－	－	${ }_{3}$	。	。	。	。	。	3	－	，	．	
9550	9600	－	${ }^{3}$	－	．	－	${ }^{3}$	－	－	。	。	。	3	－	，	．	
9600	9650	。	． 3	。	${ }_{4}$	${ }^{3}$	${ }^{3}$	。	。	．	。	。	3	－	－	．	
9650	${ }^{9700}$	。	3	。	-1	－ 3	3	。	。	。	。	。	3	－	－	．	Earthworks cutting up to 83 m deep located in rock． Potential tunnel location－ 1150 m long．Difficult construction access and likely disruption．Overall rating raised to major adverse impact due to potential major geotechnical impacts．
9700 9750	9750	。	3	。	．	3	3	。	。	－	。	。	3	－	－	．	
9750	${ }^{9800}$	。	3	。	${ }_{-1}$	－ 3	${ }^{3}$	。	－	。	。	。	3	．	－	，	
9800	9850	。	3	。	－	．	2	。	。	。	。	。	3	1	－	．	
9850	9900	。	${ }_{3}$	。	－	3	2	。	。	．	。	。	3	．	－	．	
9900	${ }^{9950}$	。	3	。	．	．	2	。	。	。	。	。	3	－	．	．	
${ }^{9950}$	10000	。	2	。	－	${ }^{3}$	\pm	。	。	。	。	。	3	－	．	．	
10000	10050	。	2	0	1	${ }^{-3}$	－	\bigcirc	0	0	．	－	－	－	．	，	
10050	10100	－	－	－	－	${ }^{3}$	－	－	－	－	－	－	3	1	4	4	Offruticonstateonacess
10100	10150	－	－	－	－	${ }^{-3}$	－	－	－	－	。	\bigcirc	3	．	4	4	Offrutut onstactenoncess．
10150	10200	－	－	－	1	${ }^{-3}$	－	－	－	－	－	－	${ }^{-3}$	1	$\stackrel{ }{-}$	－	Neessusutue ofromanaes．
10200	10250	－	－	－	－	${ }^{-3}$	－	。	－	－	－	$\stackrel{-}{1}$	3	－	．	－	Penate ullys spoply．
10250	10300	－	－	－	－	3	－	－	－	－	－	－	${ }^{3}$	1	5	5	Prase untres soper．
10300	10350	。	。	。	－	${ }^{-3}$	－	－	。	－	－	－	3	．	4	4	
10350	10400	。	。	。	${ }^{-}$	3	。	。	－	－	。	。	3	1	4	4	
10400	10450	。	。	。	${ }^{1}$	3	。	－	。	－	－	。	3	1	4	4	
10450	10500	。	。	。	4	3	－	－	－	－	。	。	3	－	4	4	
10500	10550	。	。	。	－	${ }^{3}$	－	－	。	－	。	。	3	－	4	4	
10550	10600	－	－	。	1	3	－	－	0	－	－	\bigcirc	3	－	4	4	
10600	10650	－	。	。	－	${ }^{3}$	。	－	。	－	－	\bigcirc	3	－	4	4	
10650	10700	－	0	0	－	3	－	－	0	0	－	－	。	2	${ }^{3}$	${ }^{3}$	Oiffult comstrationacess
10700	10750	－	－	－	．	${ }^{3}$	－	－	－	－	－	2	－	2	－	－	
10750	10800	－	－	－	1	3	－	－	－	－	－	2	。	2	，	s	
10800	10850	－	－	－	．	3	－	－	－	－	－	－	－	2	，	3	Offrutut onstactono acess
10850	10900	－	-1	－	$\stackrel{1}{1}$	${ }^{-3}$	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	2	$\stackrel{-3}{ }$	${ }^{3}$	Offrust constrates acese
10900		－	$\stackrel{-1}{-1}$	－	$\stackrel{1}{4}$	${ }^{-3}$	\div	\bigcirc	\div	\div	\div	$\stackrel{-1}{ }-1$	\bigcirc	2	$\stackrel{4}{4}$	4	
11000	11050	－	－	－	－	${ }^{3}$	－	－	－	－	－	4	。	2	4	4	Ostrubuen Manas cosases．
11050	11100	－	－	－	${ }^{-}$	${ }^{3}$	－	－	－	－	－	－	。	2	4	4	
11100	11150	－	－	－	1	3	\bigcirc	－	－	－	。	－	。	2	4	4	Ostabutan Manas cosanses．
11150	11200	－	－	0	－	3	\bigcirc	－	－	－	－	2	。	2	．	s	
11200	11250	－	－	－	－	3	\bigcirc	－	－	－	－	－	－	2	－	4	
11250	11300	－	1	\bigcirc	－	${ }^{3}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	-1	－	2	4	4	
11300	11350	－	－	0	1	${ }^{3}$	－	－	－	－	－	－	。	2	${ }^{-}$	4	Oistrabion manas casanes．
11350	11400	－	$\stackrel{1}{1}$	－	－	3	－	－	－	－	－	－	。	2	4	4	
11400	11450	－	－	－	1	3	－	－	0	－	－	－	。	2	4	4	
11450	11500	－	－	\bigcirc	$\stackrel{1}{1}$	${ }_{3}$	\bigcirc	${ }_{-1}^{0}$	0	－	0	${ }_{-1}$	－	$\stackrel{2}{2}$	$\stackrel{4}{4}$	$\stackrel{4}{4}$	
11550	11600	\bigcirc	\bigcirc	\bigcirc	，	${ }^{3}$	－	－	0	\bigcirc	\bigcirc	$\stackrel{1}{ }$	－	2	4	4	
11600	11650	－	－	－	\pm	－	。	－	－	－	－	\pm	。	－	4	4	
11650	11700																
11700	11750																

												$\stackrel{c}{\text { 㹍 }}$			$\begin{aligned} & n \\ & \frac{0}{0} \end{aligned}$		
				$\begin{aligned} & \text { 罚 } \\ & 0 . \\ & \vdots \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$									2 0 苟 0 0 0 0 0 0 0 0		$\begin{aligned} & \text {-1 } \\ & \underline{\mathrm{D}} \end{aligned}$		
0	50	－	0	－	－	-2	。	0	0	－	－	。	。	－	${ }^{3}$	${ }^{3}$	
50	100	－	。	－2	${ }_{-}$	-2	。	0	0	0	0	。	。	2	3	${ }^{-3}$	
100	150	。	。	2	${ }_{4}$	-2	。	。	。	。	－	。	。	2	3	${ }^{-3}$	
150	200	。	。	2	1	－2	－	。	0	。	。	－	。	2	${ }^{-3}$	${ }^{-3}$	$\substack{\text { Beanemes } \\ \text { exton }}$
200	250	－	0	－	${ }^{-1}$	－2	－	0	－	。	0	－	。	2	${ }^{-3}$	${ }^{-3}$	
250	300	。	。	2	1	2	，	。	－	。	－	。	。	2	3	${ }^{3}$	
300	350	。	。	2	${ }_{-1}$	2	。	。	。	。	。	0	。	2	${ }^{3}$	${ }_{3}$	Senemine
350	400	。	。	2	1	－ 2	－	。	。	。	。	。	。	2	3	3	
400	450	－	0	－2	－ 1	2	。	0	0	。	0	－	。	2	${ }^{3}$	${ }^{3}$	
450	500	。	。	2	1	2	，	。	－	。	。	${ }_{4}$	。	2	4	4	
500	550	。	。	2	${ }_{-1}$	2	。	。	。	。	。	。	。	2	${ }_{3}$	${ }^{-3}$	dines
550	600	。	。	2	． 1	－2	－	。	0	。	。	－	。	2	3	3	
600	650	\bigcirc	0	－	${ }^{-1}$	－ 2	。	0	0	0	0	－	。	2	4	4	Seeme
650	700	。	。	2	1	-2	。	－	0	。	。	－	。	2	4	4	
700	750	。	。	2	${ }^{1}$	-2	－	。	。	。	。	－	。	2	4	4	
750	800	。	。	2	1	－2	。	0	0	。	－	－	。	2	4	4	
800	850	\bigcirc	0	－	－	2	。	－	\bigcirc	\bigcirc	0	${ }_{-1}$	。	2	4	4	Seed
850	900	。	。	2	1	2	。	。	。	。	。	${ }_{-1}$	。	2	4	4	
900	950	。	。	－	1	－2	－	。	0	。	－	－	。	2	3	${ }^{-3}$	
950	1000	0	0	2	1	－2	。	－	0	0	0	。	。	2	3	${ }^{3}$	Senteme
1000	1050	。	。	－	－ 1	-2	。	\bigcirc	\bigcirc	\bigcirc	0	。	。	2	3	3	
1050	1100	。	。	${ }_{2}$	${ }_{-1}$	－2	。	。	。	。	－	。	。	2	${ }^{3}$	${ }^{3}$	
1100	1150	。	。	2	-1	－2	。	－	0	。	。	。	。	2	3	${ }^{-3}$	
1150	1200	\bigcirc	\bigcirc	2	${ }^{-1}$	－ 2	。	－	\bigcirc	\bigcirc	。	。	0	2	3	3	
1200	1250	。	。	2	.1	－2	。	。	－	。	。	－	。	2	3	3	
1250	1300	－	－	－	－ 1	-2	－	－	－	－	－	－	。	2	－3	${ }^{-3}$	Bex
1300	1350	。	。	2	1	－2	\bigcirc	0	0	。	0	2	。	2	－	．	273 mm diameter SGN high pressure gas main crosses alignment at this point．Proposed road level approximat alignment at this point． 5 m higher than existing
1350	1400	。	－	2	${ }^{-1}$	2	。	0	。	。	－	。	。	2	3	${ }^{-3}$	
1400	1450	\bigcirc	。	－	－ 1	-2	－	\bigcirc	0	\bigcirc	－	－	0	2	3	${ }^{-3}$	Combele
1450	1500	\bigcirc	。	2	.1	－2	。	－	－	－	。	。	0	2	3	3	Combeite
1500	1550	。	。	2	${ }_{-1}$	－	。	。	－	。	．	。	。	2	3	${ }^{-3}$	
1550	1600	。	。	2	－	－ 2	。	－	0	。	－	－	。	2	3	3	
1600	1650	\bigcirc	。	－	1	－ 2	－	。	\bigcirc	0	－	－	。	2	3	$\cdot 3$	
1650	1700	。	。	2	1	－2	－	。	－	。	。	－	。	2	3	${ }^{-3}$	
1700	1750	。	－	2	1	-2	。	。	。	。	。	。	。	2	3	${ }^{-3}$	
1750	1800	\bigcirc	${ }_{-1}$	2	－	－2	－	\bigcirc	0	。	－	－	。	2	3	${ }^{-3}$	
1800	1850	\bigcirc	${ }_{-1}$	2	1	－ 2	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	。	2	－	${ }^{-3}$	
1850	1900	。	${ }_{-1}$	2	${ }_{-1}$	－2	－	－	－	。	。	。	。	2	3	3	
1900	1950	。	。	2	－	2	\bigcirc	。	。	。	。	。	。	2	，	3	
1950	2000	\bigcirc	－	－	－ 1	－ 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	2	3	3	
2000	2050	0	0	－	－	-2	－	－	0	0	。	－	-1	1	2	-2	
2050	2100	0	－	－ 2	－	－ 2	-1	－	－	0	0	－	－	－	3	－	Offine cons
2100	2150	－	－	－ 2	－	$-$	${ }_{-1}$	。	－	0	0	－	－ 1	－	3	3	
2150	2200	－	－ 2	－2	${ }^{-1}$	2	2	－	－	－	－	－	．	1	4	4	Offlie conssuction Lare curung in rook（up to 27m deep）
2200	2250	。	${ }^{-3}$	－	，	－	－	－	－	－	－	－	－	1	－	－	
2250	2300	－	3	2	－	－2	－	。	－	－	－	－	－	－	－	－ 5	
2300	2350	。	－	2		－	－ 2	。	－	－		－	－	－	－	－	
2350	2400	－	－ 3	2	－	－	－	。	－	－		－	${ }^{1}$	－	－ 5	－	
2400	2450	－	${ }^{3}$	2	－	－	-2	。	－	\bigcirc	－	－	－	－	－	－	
2450	2500	－	${ }^{-}$	-2	－	-2	2	。	0	－	－	－	－ 1	－	－5	－	
2500	2550	。	${ }^{3}$	－2	－ 1	－2	${ }_{2}$	。	。	－	－	。	1	－	－	．	
2550	2600	－	－	2	－	－	${ }_{-1}$	。	－	－	－	－	－ 1	1	${ }^{-3}$	－	
2600	2650	－	－	2	${ }^{-1}$	－2	－	。	0	\bigcirc	－	－	${ }^{1}$	1	${ }^{-3}$	${ }^{-3}$	
2650	2700	－	－	－	1	－2	1	－	－	－	。	。	1	1	． 3	3	
2700	2750	－	2	2	－ 1	-2	－	。	0	\bigcirc	－	\bigcirc	${ }^{-1}$	－ 1	2	2	
2750	2800	－	${ }_{-}$	2	${ }^{-1}$	－	－	－	－	－	－	－	－	－	2	2	
2800	2850	－	${ }_{-1}$	2	－-1	-2	－	－	－	－	－	。	－	－	-2	2	
2850	2900	－	－	2	${ }^{-1}$	－ 2	－	－	－	－	－	2	－ 1	－	4	4	
2900	2950	－	${ }^{-1}$	2	${ }^{-1}$	-2	－	。	－	\bigcirc	。	2	${ }_{-1}$	－	4	4	
2950	3000	0	-1	2	－	-2	2	。	－	0	0	2	1	1	\checkmark	－	
3000	3050	－	－	2	－	-2	${ }_{2}$	。	－	\bigcirc	0	2	－	1	\checkmark	${ }^{-}$	Preme
3050	3100	\bigcirc	0	2	${ }_{-1}$	-2	2	。	－	。	。	。	－	－	4	4	
3100	3150	\bigcirc	0	2	${ }_{-}$	-2	－ 2	－	－	－	－	－	－	－-1	4	4	
3150	3200	－	－	2	${ }^{-1}$	－	2	。	－	－	－	－	－	－	4	4	
3200	3250	－	-1	${ }^{2}$	－	-2	－	－	－	0	0	。	－	1	4	4	
3250	3300	。	－	2	${ }^{-1}$	－ 2	2	。	－	－	－	－	，	－	4	4	
3300	3350	。	－	2	－	-2	－2	－	0	0	0	2	－ 1	－	\checkmark	－	Ster
3350	3400	－	－	2	${ }^{1}$	－ 2	－	。	－	－	－	。	－	1	－ 2	2	
3400	3450	。	-1	－2	－	－2	－	－	－	0	－	。	${ }^{1}$	2	${ }^{3}$	－	
3450	3500						－	。	－	。	。	。	${ }_{-1}$	－2	3	${ }^{-3}$	Sele

8650	8700	。	－ 3	－2	－ 1	－2	－2	0	0	0	。	－ 1	． 3	－	－	－	
8700	8750	。	${ }^{-3}$	－2	${ }_{-1}$	－2	2	0	。	。	。	－ 1	3	1	8	－	
8750	8800		－		－	－	－								，	，	Large cutting up to 36 m in rock． 33 KV line．Pylon within 100 m of alignment at ch 8727 m ．Difficult construction
8800	8850	。	3	2	${ }_{-1}$	－2	2	。	0	。	。	－1	－3	－1	8	－	，
8850	8900	。	${ }^{-3}$	－2	${ }_{-1}$	－2	－2	。	0	。	。	－ 1	－3	－ 1	－	－	
8900	8950	－	${ }^{-3}$	2	－ 1	－2	－2	0	0	0	－	${ }^{1}$	－3	－1	8	－	
8950	9000	。	${ }^{-3}$	2	${ }_{-1}$	－2	． 2	。	。	。	。	－2	－	－ 1	－	．	
9000	9050	。	${ }^{-3}$	－2	${ }_{-1}$	-2	－2	。	0	0	。	${ }_{1}$	． 3	${ }_{-1}$	－	－	
9050	9100	。	${ }^{-3}$	－2	${ }^{-1}$	－2	－2	0	0	。	。	－1	－3	－ 1	－	－	
9100	9150	。	3	2	－ 1	－2	－2	。	－	。	。	${ }_{-1}$	3	－1	－	－	Large cutting up to 36 m in rock． 33 KV line．Difficult construction access．
9150	9200	。	${ }^{-3}$	－2	${ }^{1}$	－2	－2	－	0	。	－	${ }_{-1}$	－ 3	${ }_{-1}$	－	－	
9200	9250	。	${ }^{3}$	2	${ }_{-1}$	-2	． 2	0	0	。	。	2	． 3	． 1	．	－	Large cutting up to 22 m in rock．SGN 273 mm HP Gas Main
9250	9300	。	－2	2	${ }^{-1}$	－2	${ }_{-1}$	。	。	。	。	－2	${ }^{-3}$	－ 1	\rightarrow	\rightarrow	Large cutting up to 12 m in rock．SGN 273 mm HP Gas Main Difficult construction access．
9300	9350	。	－2	－2	－ 1	－2	。	。	0	－	。	。	－3	－	4	4	Minor eveld difference．officult construction aceess．
9350	9400	。	－ 1	－2	－	－2	。	。	－	－	－	。	${ }^{-3}$	－	4	4	Minor eveed differene．offictult constuction aceess．
9400	9450	。	${ }^{-1}$	． 2	－ 1	－2	。	。	0	。	－	。	－3	－1	4	4	Minor eveved diferenee．officult constuction aceess．
9450	9500	。	${ }^{-1}$	－2	－1	-2	。	。	。	－	－	。	${ }^{-3}$	－1	4	4	
9500	9550	。	${ }_{-1}$	-2	． 1	－2	。	。	0	。	。	。	－3	－ 1	4	4	Mnor eveve difference．offriult constrution aceess．
9550	9600	。	－1	－2	${ }^{-1}$	－2	－	。	0	0	0	。	－	－ 1	4	4	Mnor eveved difference．officult constuction aceess．
9600	9650	。	－ 1	－2	． 1	－2	。	。	。	。	－	。	3	－ 1	4	4	Minor eveed difference．officulut construction access．
9650	9700	0	－1	－2	－ 1	－2	－	－	0	－	0	0	－3	－1	4	4	Minor eveed differene．offifulut constuction access．
9700	9750	。	${ }^{-1}$	－	－ 1	－2	。	。	－	。	－	。	${ }^{-3}$	－	4	4	Minor eveed differene．．ifficult constuction access．
9750	9800	。	－	－2	${ }^{-1}$	－2	－	。	－	。	－	。	－3	－	4	4	Minor eveved differene．．officult constuction aceess．
9800	9850	。	。	－2	${ }_{-1}$	－2	。	0	0	。	－	。	－3	－ 1	4	4	Mnor evel diffeerene．officulut construction aceess．
9850	9900	。	0	－2	${ }^{-1}$	－2	。	。	－	。	－	。	－ 3	－	4	4	Minor eveel differene．．officult construction aceess．
9900	9950	。	。	－2	－ 1	-2	。	。	0	。	－	。	－3	－ 1	4	4	Minor evele differene．．officult construction aceess．
9950	10000	0	0	－2	－ 1	－2	0	0	－	0	0	－ 1	－3	－1	－	－ 5	Privete ulilis sppples，offifult consturction access．
10000	10050	。	0	－2	${ }^{-1}$	－2	。	。	－	。	－	－	－3	－ 1	－	－ 5	Privete ulily spoples，officulut constuction access．
10050	10100	。	－ 1	2	－ 1	－2	0	。	－	。	。	。	－3	－ 1	4	4	Minor eveve difference．officuit constuction aceess．
10100	10150	。	${ }^{-1}$	－2	－1	－2	。	0	0	。	－	。	－3	－	4	4	Minor eveel differene．．officult construction aceess．
10150	10200	。	${ }_{-1}$	2	－ 1	-2	。	0	0	－	。	。	－	－	4	4	Minor eveed differene．officult constuction access．
10200	10250	。	${ }_{-1}$	－2	${ }^{-1}$	－2	。	0	0	。	－	。	－3	－1	4	4	
10250	10300	。	－ 1	2	－1	-2	－ 1	0	0	。	。	。	${ }^{3}$	${ }_{-1}$	－	－ 5	
10300	10350	。	－1	－2	－ 1	-2	－ 1	－	0	。	。	。	－ 3	－1	－ 5	－	
10350	10400	。	${ }_{-1}$	2	${ }_{-1}$	－2	${ }_{-1}$	0	0	。	。	。	－ 3	${ }_{-1}$	－ 5	－ 5	
10400	10450	。	${ }_{-1}$	2	－ 1	－2	-1	0	0	。	。	。	－ 3	${ }_{-1}$	－ 5	－	
10450	10500	。	。	－2	－ 1	－2	－1	－	0	。	。	－	－ 3	－ 1	－ 5	－ 5	Embankment up to 7.5 m high on compressible ground． Difficult construction access．
10500	10550	。	。	－2	${ }_{-1}$	－2	－1	0	0	。	。	－	${ }^{-3}$	${ }_{-1}$	－ 5	－ 5	
10550	10600	。	。	2	－ 1	－2	-1	0	0	。	。	${ }_{-1}$	3	－1	－	${ }^{-3}$	sw istribution Main．
10600	10650	。	。	－2	${ }_{1}$	－2	－1	0	0	。	0	－	－ 3	${ }^{-1}$	－ 5	－ 5	Mor er mbenement onc
10650	10700	。	。	－2	－ 1	-2	－ 1	。	0	。	。	。	－ 3	－ 1	－ 5	－	Minor embenkenent on compessibile ground．Offfiult
10700	10750	。	。	2	－ 1	－2	-1	－	0	。	。	。	－ 3	－ 1	－ 5	－	Mnor e mbenkenent on compessible ground．Diffiult
10750	10800	。	。	－2	${ }_{-1}$	-2	${ }_{-1}$	。	0	。	－	。	3	－1	．	－	
10800	10850	。	。	-2	－ 1	－2	－1	－	0	0	。	－	－ 3	${ }^{-1}$	－5	－ 5	Minor embankment on compressible ground．Difficult construction access．
10850	10900	。	。	－2	－ 1	-2	－ 1	0	0	0	。	－	－3	－ 1	－ 5	－ 5	
10900	10950	。	${ }_{-1}$	－2	－	－2	${ }_{-1}$	0	0	。	。	。	－3	－1	． 5	－	
10950	11000	。	${ }_{-1}$	－2	${ }_{-1}$	－2	－1	。	。	。	。	。	${ }_{-3}$	－ 1	－5	－	Minor embenkenent on compessible ground．Officult
11000	11050	。	${ }_{-1}$	2	${ }_{-1}$	－2	－1	0	0	。	。	－	${ }^{-3}$	${ }_{1}$	－ 5	－ 5	Mor er mbanement on compessible ground．Difficut
11050	11100	。	－	-2	－ 1	-2	-1	－	0	0	。	\bigcirc	－ 3	1	－ 5	－ 5	Minor embenamenets on compessible ground．Offfiult
11100	11150	。	－ 1	－ 2	－ 1	－2	－1	。	。	。	。	。	－3	${ }_{-1}$	－ 5	－5	Minor embenement on compesesible ground．Officult
11150	11200	。	${ }_{-1}$	－2	${ }_{-1}$	－2	${ }_{-1}$	0	。	。	。	\bigcirc	－ 3	－1	－5	－	Minor embenkenent on compessible ground．Offitult
11200	11250	。	。	2	－	－2	－1	0	。	。	。	0	－ 3	－ 1	－ 5	－	Minor embenement on compessible ground．Offfluth
11250	11300	。	。	－2	－ 1	－2	－	0	。	。	。	0	－1	－1	－2	－2	
11300	11350	。	。	－2	${ }_{-1}$	－2	0	0	。	。	。	\bigcirc	－ 1	－1	－	-2	
11350	11400	－	0	－	． 1	-2	。	。	0	。	－	。	－ 1	－	-2	－2	
11400	11450	－	－	－ 2	－ 1	－2	0	。	－	－	0	。	－	－	-2	-2	
11450	11500	。	。	-2	${ }^{-1}$	－	\bigcirc	0	－	。	。	。	1	－1	－	-2	
11500	11550	。	。	－2	－	－2	－	0	－	。	－	。	－	－1	－2	－2	
11550	11600	。	。	－	${ }^{-1}$	－ 2	。	。	。	。	。	。	${ }^{-1}$	－	－	－2	
11600	11650																
11650	11700																

							$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{3}{3} \\ & 0 . \end{aligned}$								$\begin{aligned} & \text { 几 } \\ & \frac{0}{\sigma} \end{aligned}$		
									$\begin{aligned} & \text { 끙 } \\ & \text { 으 } \\ & \text { 믈. } \end{aligned}$		Attenuation requirement	$\begin{aligned} & \text { c } \\ & \text { 竗 } \end{aligned}$		$\begin{aligned} & -1 \\ & \stackrel{-1}{3} \\ & \stackrel{3}{0} \\ & \stackrel{訁}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text {-1 } \\ & \underline{ \pm} \end{aligned}$		
0	50	－	0	-1	1	${ }^{-3}$	。	0	－	－	。	－	。	2	3	3	
50	100	\bigcirc	0	1	－	${ }^{-3}$	－	0	－	－	－	0	。	2	${ }^{3}$	${ }^{-3}$	len
100	150	。	。	\pm	${ }_{-1}$	${ }^{3}$	。	。	。	－	。	。	。	2	3	${ }_{3}$	lomele
150	200	。	－	${ }_{-1}$	1	${ }^{3}$	－	。	－	－	－	。	。	2	3	${ }^{-3}$	Nomele
200	250	。	－	1	－ 1	3	。	。	0	0	。	。	。	2	3	${ }^{-3}$	
250	300	－	。	1	${ }_{1}$	－ 3	。	－	。	－	。	。	。	2	${ }^{3}$	3	lot
300	350	。	。	${ }_{-1}$	－ 1	3	。	。	。	。	－	。	。	2	3	3	lot
350	400	。	。	1	1	${ }^{-3}$	。	。	。	－	。	。	。	2	3	${ }_{3}$	
400	450	－	。	－	－	${ }^{-}$	－	\bigcirc	\bigcirc	0	。	。	。	2	3	3	
450	500	－	。	－	${ }_{-1}$	${ }^{-3}$	。	－	－	－	。	－ 1	。	2	4	4	Traftrsololand Aseses．
500	550	。	。	－	－	${ }^{3}$	－	。	－	。	。	。	。	2	${ }^{3}$	${ }^{-3}$	
550	600	0	0	－	1	${ }^{-3}$	－	－	－	－	－	－	－	2	3	－	
600	650	0	－	1	． 1	${ }^{-3}$	－	－	－	－	。	－	。	2	4	4	Sse 33wimes．
650	700	－	－	－	1	${ }^{-3}$	－	－	－	－	－	${ }^{-1}$	－	2	4	4	Ste 3salumes．
700	750	－	－	－	4	${ }^{-3}$	－	－	－	－	－	－	。	2	4	4	Ste 3salimes．
750	800	－	－	－	${ }_{-1}$	${ }^{-3}$	－	－	－	－	，	－ 1	。	2	4	4	Sse 33Numes．
800	850	。	。	－	－	${ }^{3}$	。	。	－	。	。	－	。	2	4	4	SSE 3s\％unos．
850	900	－	－	${ }^{-1}$	－	${ }^{-3}$	－		－	－	－	－	－	2	4	4	SSE 33 M mases．
900	950	。	。	${ }^{-1}$	－ 1	${ }^{3}$	。	－	。	－	。	。	。	2	3	3	
950	1000	。	。	－	－	${ }^{3}$	。	。	－	－	。	。	。	2	3	3	
1000	1050	0	－	${ }_{-1}$	${ }^{1}$	${ }^{-3}$	－	0	0	0	。	。	。	2	3	${ }^{-3}$	
1050	1100	。	。	${ }^{-1}$	${ }^{-1}$	－ 3	。	－	。	0	。	。	。	2	3	－	
1100	1150	。	。	－	－ 1	${ }^{-3}$	。	－	0	0	。	。	。	2	3	${ }^{-3}$	
1150	1200	0	。	.1	－	${ }^{3}$	。	。	。	0	。	。	。	2	3	${ }^{3}$	｜ose
1200	1250	－	。	－1	4	－ 3	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	。	。	2	3	${ }^{-3}$	
1250	1300	。	。	1	${ }_{-1}$	${ }^{3}$	。	。	0	。	。	。	。	2	${ }^{3}$	${ }_{-3}$	Dosme
1300	1350	。	。	${ }_{-}$	－	${ }^{3}$	－	。	0	－	。	2	。	2	．	．	
1350	1400	－	\bigcirc	${ }^{1}$	1	${ }^{3}$	－	\bigcirc	－	－	\bigcirc	2	。	2	－ 5	－	
1400	1450	－	－	－	－ 1	${ }^{-3}$	\bigcirc	－	－	－	。	－	。	2	3	${ }^{-3}$	
1450	1500	－	－	－	－	－	－	－	，	－	－	－	－	－	3	${ }^{-}$	
1500	1550	－	-1	${ }^{-}$	1	${ }^{-3}$	－	－	－	－	－	－	－	－	2	－	
1550	1600	－	-1	1	－	${ }^{3}$	－	－	－	－	－	－	1	－	2	－ 2	
1600	1650	－	-1	\cdot	$\cdot 1$	${ }^{3}$	－	－	－	－	－	。	－	－	2	－2	
1650	1700	－	－	1	${ }^{-1}$	${ }^{-}$	－	－	－	－	－	－	1	－	2	-2	
1700	1750	－	－	－ 1	1	3	－ 1	－	0	0	0	。	－	－	3	3	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic disruption．
1750	1800	－	－	${ }^{-1}$	1	${ }^{3}$	－	－	－	0	\bigcirc	－	1	－	3	－3	Large embankment up to 32 m high on non－identified disruption．
1800	1850	－	－	－	1	${ }^{3}$	－ 2	－	－	－	0	1	－	－ 1	5	${ }^{5}$	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic disruption．
1850	1900	－	${ }^{3}$	－	－	－ 3	－ 2	0	－	0	－	－	1	－ 1	． 5	－5	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic disruption．
1900	1950	－	.3	${ }^{-1}$	${ }^{-1}$	－	2	0	－	－	－	。	${ }_{-1}$	－	${ }_{5} 5$	${ }_{-5}$	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic
1950	2000	。	${ }^{3}$	${ }^{1}$	－	${ }_{-3}$	－ 2	。	。	。	。	－	－	－	${ }^{-5}$	${ }_{-5}$	Large embankment up to 32 m high on non－identified ground cond disruption．
2000	2050	－	－	－1	－	－3	－2	。	。	。	－	－	－ 1	－ 1	－ 5	－5	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic disruption．
2050	2100	－	${ }^{3}$	${ }_{-1}$	．	${ }^{3}$	2	－	。	。	－	－	${ }^{1}$	－ 1	． 5	． 5	Large embankment up to 32 m high on non－identified disruption．
2100	2150	－	3	－	${ }^{-1}$	${ }^{3}$	－ 2	－	0	－	。	。	1	－ 1	－ 5	－ 5	Large embankment up to 32 m high on non－identified disruption．
2150	2200	－	－ 3	1	1	${ }^{3}$	2	。	－	0	0	－	1	－ 1	－ 5	－5	Large embankment up to 32 m high on non－identified disruption．
2200	2250	－	－ 3	－	－	－ 3	－ 2	－	－	0	0	。	1	－	5	5	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic disruption．
2250	2300	－		1	－	${ }^{-3}$		。	－	－			－ 1	－ 1	． 5	－5	
2300	2350	－	${ }^{-3}$	${ }_{-1}$	．	${ }^{-3}$		－	－	。	。	。	${ }_{-1}$	－	－5	． 5	isruption． ground conditions．Minor access impacts and local traffic dissuotion．
2350	2400	。	${ }^{-3}$	－	－	${ }^{-3}$	2	。	。	。	。	。	－	－1	－5	． 5	
2400	2450	。	${ }^{-3}$	${ }_{-1}$	－	${ }^{-3}$	－2	。	。	。	－	－	－1	－1	－	－	Large embankment up to 32 m high on non－identified ground cond disruption．
2450	2500	。	${ }^{3}$	${ }_{-1}$	．	${ }^{-3}$	2	。	。	。	。	。	－	．	． 5	．	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic disruption
2500	2550	。	${ }^{-3}$	${ }_{1}$	${ }_{1}$	${ }^{3}$	2	。	－	。	。	0	1	－	－	－	Large embankment up to 32 m high on non－identified disruption．
2550	2600	。	${ }_{3}$	${ }_{-}$	${ }_{-1}$	${ }^{-3}$	2	。	0	－	－	2	．	－	${ }_{7}$	${ }_{7}$	Large embankment up to 32 m high on non－identified disruption．SGN 273 mm HP Gas main crossing．
2600	2650	－	${ }^{-3}$	－ 1	－	－ 3	2	－	0	－	0	2	－	－ 1	7	-7	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic disruption．SGN 273 mm HP Gas main crossing．
2650	2700	。	${ }_{3}$	${ }_{-}$	${ }_{-}$	${ }^{-3}$	2	。	。	。	。	2	1	－	，	\rightarrow	Large embankment up to 32 m high on non－identified ground conditions．Minor access impacts and local traffic disruption．SGN 273 mm HP Gas main crossing．
2700	2750	－	-2	－	－	－3	\therefore	－	－	－	－	－	－	－	${ }^{-}$	－3	Mnorememankenet onordeentried groud condition．
2750	2800	－	－2	－	.$^{-1}$	${ }^{-3}$	$\stackrel{-}{1}$	－	－	－	－	。	－	－	3	${ }^{-3}$	Mnore embenkenet onor ieentifed gound condition．
2800	2850	－	-2	－	\cdots	${ }^{-3}$	－	－	－	。	－	。	－ 1	－	-2	－	
2850	2900	－	－ 1	${ }_{-1}$	－	${ }^{-3}$	－	－	－	－	－	－	－	－ 1	2	－2	
2900	2950	。	-1	${ }^{-}$	－	${ }^{3}$	－	－	－	－	－	－	${ }^{-1}$	－	2	－2	
2950	3000	－	－	－	－	${ }^{-3}$	－	－	－	－	－	－	－	－	2	2	
3000	3050	－	-1	－	\pm	${ }^{3}$	。	-2	－	－	。	。	－	－	4	4	sinctue fors ste ras．
3050	3100	－	$-{ }_{-}$	－	$\stackrel{-}{1}$	3	。	－	－	－	－	。	－	－	－2	－2	－
3100	3150	－	-1	－	－	3	－	－	。	。	。	。	－	－	2	-2	
3150	3200	。	${ }_{-}$	－	－	－	\checkmark	\bigcirc	\bigcirc	0	\bigcirc	。	－	－	3	${ }_{3}$	
3200	3250	。	2	-1	$-$	－3	${ }_{-1}$	。	0	。	－	。	－	－	3	3	
3250	3300	。	2	${ }^{-}$	1	${ }^{-3}$	${ }_{-1}$	\bigcirc	－	0	\bigcirc	${ }_{-1}$	－	${ }_{-1}$	4	4	
3300	3350	。	2	1	${ }_{-1}$	${ }^{-3}$	－	\bigcirc	\bigcirc	0	\bigcirc	1	－	，	4	4	
3350	3400	\bigcirc	－	－	－	－	－	。	．	－	\bigcirc	－	1	－	4	4	
3400	3450					－	－	。	。	。	。	${ }^{-}$	－		4	4	

3450	3500	－	2	－	．	3	－	。	－	－	－	－	1	－	4	4	
3500	3550	\bigcirc	2	1	－	3	－	－	\bigcirc	－	－	${ }^{-1}$	1	－	3	3	3avcrasine
3550	3600	－	－	1	－	${ }^{3}$	－	－	－	－	－	－	1	－	${ }^{3}$	${ }^{3}$	3skocsine．
3600	3650	－	－	1	．	${ }^{3}$	－	。	－	－	－	－	1	1	3	3	${ }^{\text {3skrosasme }}$
3650	3700	－	－	${ }^{-}$	－	${ }^{3}$	\bigcirc	\bigcirc	－	－	－	－	．	－	${ }^{3}$	3	${ }^{33} \times$ cosasme．
3700	3750	－		－	－	${ }^{3}$	－	－	\bigcirc	－	－	－	－	1	3	${ }^{3}$	${ }^{33} \times$ cosasme
3750	3800	－	－	1	1	3	\bigcirc	。	－	－	－	${ }^{1}$	－	－	3	3	3skrossme
3800	3850	－	0	4	1	3	－	－	\bigcirc	\bigcirc	－	1	1	－	3	3	3svocosise
3850	3900	－	－	$\stackrel{-}{1}$	－	3	。	。	－	－	－	1	－	－	3	3	33xcossose
3900	3950	－	－	－	－	3	－	－	\bigcirc	\bigcirc	0	\bigcirc	1	1	－	2	
3950	4000	－	－	4	．	3	－	－	－	－	－	－	－	1	2	2	
4000	4050	－	－	－	．	3	－	。	－	－	。	－	－	－	2	\therefore	
4050	4100	－	－	4	$\stackrel{-}{4}$	3	－	。	－	－	。	－	1	－	2	2	
4100	4150	－	－	4	．	${ }^{3}$	－	。	－	\bigcirc	－	－	－	－	2	2	
4150	4200	－	－	4	．	${ }^{3}$	－	。	－	－	－	－	－	1	2	2	
4200	4250	－	－	．	．	${ }^{3}$	－	。	－	－	。	－	．	1	2	2	
4250	4300	－	－	－	－	3	－	。	－	\bigcirc	\bigcirc	－	1	1	2	2	
4300	4350	－	－	4	－	${ }^{3}$	－	。	－	－	－	－	．	－	2	2	
4350	4400	－	－	$\stackrel{1}{4}$	．	－	－	。	\bigcirc	\bigcirc	0	－	1	－	2	2	
4400	4450	－	－	－	${ }^{1}$	3	－	。	\bigcirc	\bigcirc	－	－	1	1	2	2	
4450	4500	－	0	$\stackrel{1}{ }$	－	3	。	。	－	－	。	－	1	－	$=$	．	
4500	4550	\bigcirc	．	4	．	3	－	－	\bigcirc	\bigcirc	－	－	，	－	2	2	
4550	4600	\bigcirc	\bigcirc	4	．	3	－	－	\bigcirc	\bigcirc	。	－	－	1	2	2	
4600	4650	－	－	4	．	${ }^{3}$	－	。	－	－	－	－	1	－	2	2	
4650	4700	－	－	4	．	3	－	－	－	－	。	－	－	－	2	2	
4700	4750	－	－	4	．	3	－	－	－	－	－	－	1	－	2	2	
4750	4800	－	－	4	．	3	－	－	－	－	。	－	－	．	2	2	
4800	4850	－	－	－	．	3	－	。	－	－	。	－	1	－	2	2	
4850	4900	－	－	4	－	3	－	。	－	－	－	－	．	－	2	2	
4900	4950	－	－	－	－	3	－	。	－	\bigcirc	。	－	－	－	2	2	
4950	5000	－	－	4	－	3	－	－	－	－	－	。	1	1	2	2	
5000	5050	－	－	4	．	3	－	－	－	－	．	。	－	－	2	2	
5050	5100	－	$\stackrel{1}{ }$	4	．	3	\bigcirc	－	－	－	－	－	1	1	2	2	
5100	5150	－	1	1	．	－	－	－	－	－	－	－	1	1	2	2	
5150	5200	－	．	．	．	． 3	－	－	－	－	－	－	1	－	2	2	
5200	5250	－	－	1	．	${ }^{3}$	－	。	－	－	－	－	1	－	2	2	
5250	5300	。	2	1		3	－	－	。	。	。	。	1	－	3	${ }^{3}$	
5300	5350	。	2	1	，	－	，	－			－	－	，	，	－	，	condioms
5350	5400	－	2	4	\pm	${ }^{3}$	－	－	－	－	－	。	－	1	3	3	
5350	5400	－	2	4	．	3	－	。	－	－	－	－	1	－	3	3	
5400	5450	。	2	4	－	${ }^{3}$	－	－	－	－	。	－	1	－	${ }^{3}$	3	coasoms
5450	5500	\bigcirc	\pm	－	．	－ 3	－	。	－	－	－	－	．	1	2	2	
5500	5550	－	－	－	．	${ }^{3}$	－	。	－	－	。	－	1	－	2	2	
5550	5600	\bigcirc	－	－	1	3	－	。	－	\bigcirc	。	－	．	－	2	2	
5600	5650	－	－		－	3	－	。		－	－	－	．	－	3	${ }^{3}$	
5550	5700	－	2	1	－	3	$\stackrel{-}{1}$	。	－	－	。	－	1	－	3	3	
5700	5750	\bigcirc	2	4	${ }^{1}$	－	2	－	\bigcirc	\bigcirc	－	－	1	－	4	4	
5750	5800	－	－	4	．	${ }^{3}$	2	－	－	－	－	－	1	1	－	－	
5800	5850	\bigcirc	3	4	．	3	2	。	－	\bigcirc	－	\bigcirc	－	－	－	5	
5850	5900	－	3	4	．	3	3	。	－	－	－	。	1	1	${ }^{-}$	\checkmark	
5900	5950	－	3	\pm	－	3	${ }^{3}$	－	－	－	。	－	－	－	－	，	
5950	6000	。	．	1	－	${ }^{3}$	${ }^{3}$	。	。	。	。	：	．	－	－	．	
6000	6050	－															Men
6050	6100	\bigcirc	3	－	．	3	3	－	－	－	－	－	2	－	\rightarrow	7	
6050		－	3	1	1	3	3	－	－	－	－	－	2	－	7	\rightarrow	
6100	6150	－	3	－	－	3	3	－	－	－	。	－	2	－	\rightarrow	\rightarrow	
6150	6200													，	，		
6200	6250	－	${ }^{3}$	-1	＋	${ }^{3}$	${ }^{3}$	－	－	－	－	－	．	1	－	，	
6250	6300	－	${ }^{3}$	－	1	${ }^{-3}$	－	\bigcirc	\bigcirc	－	\bigcirc	\because	2	1	${ }^{-}$	－	
6300	6350	\bigcirc	${ }^{3}$	$\stackrel{1}{4}$	1	${ }^{3}$	－2	\bigcirc	\bigcirc	\bigcirc	－	－	2	－1	\cdots	${ }_{-}$	
6350	6400	－	3	1	${ }^{-1}$	3	2	－	－	－	．	－	2	－	－	．	
6400	6450	－	3	4	．	3	${ }_{-}$	。	－	－	。	－	2	－	－	－	
6450	6500	\bigcirc	2	1	－	3	$\stackrel{1}{4}$	。	\bigcirc		。	\bigcirc	2	1	$\stackrel{4}{4}$	4	
6500	6550	\bigcirc	－	$\stackrel{1}{4}$	－	3	－	－	\bigcirc	\bigcirc	。	－	2	－	3	3	
6550	6600	－	1			3	－	。	－	－	－	$\stackrel{1}{ }$	2	1	4	4	
6600	6650	－	－	${ }^{-}$	－	3	。	。				。	2	1	3	3	
6650	6700	。	－	4	－	3	－	－			－	－	2	1	3	3	
6700	6750	－	－	4	1	3	－	－	－	－	－	。	2	1	3	${ }^{3}$	Sosmen
6750	6800	－	－	${ }_{1}$	1	3	\bigcirc	－	－	\bigcirc	－	。	2	－	3	${ }_{3}$	
6800	6850	－	－	\pm	1	3	－	－	－	－	－	－	2	1	3	3	
6850	6900	。	。	1	1	3	\bigcirc	－	－	－	。	－	2	－	3	3	
6900	6950	－	－	－	－	3	－	。	－	－	－	，	2	1	3	3	
6950	7000	－	。	－	1	${ }^{3}$	\bigcirc	。	－	－	－	－	2	1	3	${ }^{3}$	
7000	7050	。	。	－	．	3	\bigcirc	。	\bigcirc	－	－	－	2	1	3	3	Semen
7050	7100	\bigcirc	－	4	．	－3	。	。	－	－	\bigcirc	。	2	－	${ }^{3}$	${ }^{3}$	
7100	7150	－	－	4	－	3	－	。	－	\bigcirc	。	。	2	－	3	3	
7150	7200	－	－	4	．	3	。	。	。	。	。	。	2	1	3	3	
7200	7250	\bigcirc	－	1	1	${ }^{3}$	－	。	\bigcirc	。	．	－	2	1	${ }_{3}$	${ }^{3}$	Semen
7250	7300	－	\bigcirc	4	1	${ }^{3}$	－	。	－	－	。	－	2	1	3	${ }^{3}$	Semen
7300	7350	。	－	4	1	3	\bigcirc	－	－	－	。	－	2	－	3	3	
7350	7400	－	－	．	1	${ }^{3}$	－	－	\bigcirc	－	－	。	2	－	3	${ }_{3}$	
7400	7450	－	－	1	－	3	\bigcirc	。	－	\bigcirc	－	。	2	1	3	${ }^{3}$	
7450	7500	。	。	－	1	3	\bigcirc	。	－	。	－	－	2	－	${ }^{3}$	${ }^{3}$	
7500	7550	。	。	1	－	3	。	－	－	－	－	－	2	－	3	3	
7550	7600	－	－	4	－	3	\bigcirc	。	－	－	0	－	2	－	3	${ }^{3}$	
7600	7650	－	－	－	．	3	－	－	－	－	－	－	2	1	3	3	
7650	7700	\bigcirc	0	－	1	－3	\bigcirc	。	－	\bigcirc	－	－	2	1	3	3	Neorse
7700	7750	\bigcirc	－	－	．	－	－	。	。	－	。	。	2	－	4	4	
7750	7800	。	2	4	4	－	$\stackrel{1}{4}$	。	。	－	。	。	2	．	4	${ }_{4}$	
7800	7850	\bigcirc	2	－	－	．	－	－	－	－	。	。	2	1	S	－	
7850	7900	－	2	．	－	3	2	。	\bigcirc	－	。	。	2	1	－	．	
7900	7950	。	3	${ }_{-}$	－	3	2	。	－	－	－	。	2	1	$\stackrel{5}{ }$	－	
7950	8000	－	3	1	．	3	2	。	\bigcirc	\bigcirc	。	－	2	1	－	－	
8000	8050	－	3	－	1	3	－2	。	－	－	－	－	2	－	6	－	
8050	8100	。	3	1	1	3	2	。	－	－	－	－	2	1	${ }_{5}$	－	
8100	8150	。	3	－	1	3	－	－	－	－	－	－	2	－	－	5	
8150	8200	。	2	${ }^{-}$	1	－3	．	－	\bigcirc	－	－	－	2	－	$\stackrel{4}{4}$	4	
8200	8250	\bigcirc	2	－	－	3	－	。	－	\bigcirc		－	2	－	3	，	Offrutut onsmation acess
8250	8300	－	\pm	1	－	3	－	。	－	－	－	－	2	－	${ }^{3}$	3	Offrut costrateonacess
8300	8350	－	4	4	．	${ }^{3}$	\bigcirc	－	－	－	－	－	2	1	3	－ 3	Offerat constactonocess
8350	8400	－	－	\pm	1	－	\bigcirc	。	－	－	－	\bigcirc	2	1	3	． 3	Offrut contrateonacess
8400	8450		。												3		Offucticonstaction acess

8500	8550	。	－	－	${ }^{1}$	${ }^{-3}$	－	。	0	－	。	。	2	－	3	${ }^{-3}$	officut constrution aceess
8550	8600	。	－	－ 1	－ 1	${ }_{-3}$	\bigcirc	3	。	。	。	。	． 2	－	－	，	
8600	8650	。	${ }_{-1}$	${ }_{-1}$	${ }_{1}$	${ }^{-3}$	${ }_{-1}$	${ }_{3}$	。	。	。	。	－	－	，	，	Major structure over the Glen Water／Urie．Overall rating geotechnical impacts assoclated with structure foundations．Difficult access and some local disriut
8650	8700	。	－2	－	－	－3	－ 1	${ }_{-3}$	。	0	。	${ }_{-1}$	－2	－	－	．	
8700	8750	。	${ }_{2}$	${ }_{-1}$	${ }_{1}$	${ }^{3}$	${ }_{-2}$	${ }_{3}$	。	。	。	。	－2	－1	\＆	，	
8750	8800	。	－3	${ }_{-1}$	－	${ }^{3}$	${ }_{-2}$	${ }_{3}$	${ }_{-3}$	0	。	。	－2	－	－ 10	－10	Major structure over the Glen Water／Urie．Overall rating geotechnical impacts associated with structure foundations．Difficult access and some local disruption
8800	8850	。	${ }^{3}$	${ }_{-1}$	${ }_{-1}$	${ }^{-3}$	－2	${ }_{3}$	${ }_{3}$	。	。	。	－2	${ }^{1}$	－10	－10	
8850	8900	。	${ }_{3}$	${ }_{-1}$	${ }_{-1}$	－3	3	${ }_{3}$	3	。	。	。	－2	．	－11	．11	Maios structure over the cien water／lure overall ating Eevecthncal mpacts ssscostated with thututurue foundaions．Dffficult aceess and some local dssurption
8900	8950	。	${ }^{-3}$	${ }_{-1}$	${ }_{-1}$	${ }^{-3}$	－2	－3	${ }^{-3}$	。	。	。	－2	${ }^{1}$	－10	－10	Major structure over the Glen Water／vie．Overall rating ralsed to major a dverse impact due to potential major geotechnical impact asscolted with structure \qquad
8950	9000	。	－3	-1	－-	－3	${ }_{-2}$	3	。	。	。	。	－	－	．	，	
9000	9050	。	－	${ }_{-1}$	${ }_{-1}$	${ }^{-3}$	。	${ }^{-3}$	。	。	。	。	－	－ 1	－	．	
9050	9100	。	-1	－ 1	1	－3	。	－3	0	0	0	。	－2	1	．	．	Major stucture over the Gien water／lure．Overall 1 ating Tibed to major advese impact due to openental major
9100	9150	。	－	${ }_{-}$	－ 1	，	－	－	－	－	－	。	－	－	${ }^{-3}$	－3	oiffurt constration aceess
9150	9200	。	－ 1	1	1	${ }^{-3}$	\bigcirc	。	。	。	。	。	－2	－	${ }^{-3}$	－	offfutur constration nacess．
9200	9250	－	－	－	.1	${ }^{-3}$	－	－	－	－	－	－	2	－1	3	3	Offrutur constration acees．
9250	9300	－	－	${ }^{-1}$	${ }^{-1}$	${ }^{-3}$	－	－	－	－	－	－	2	－	3	${ }^{-3}$	offrutic contruction acees．
9300	9350	。	${ }^{-1}$	－	${ }^{1}$	，	－	－	－	－	－	。	－	－	${ }^{-3}$	${ }^{-3}$	Offraut constrution aceess
9350	9400	。	${ }_{-1}$	${ }_{-1}$	${ }^{-1}$	${ }^{-3}$	。	。	。	。	。	。	。	2	${ }^{3}$	${ }^{-3}$	Mnor（tutr ende embenkmein
9400	9450	－	－1	-1	－ 1	${ }^{-3}$	。	。	。	。	。	。	。	2	${ }^{3}$	${ }^{-3}$	Menor cutirg gnd er
9450	9500	。	${ }_{-1}$	${ }^{-1}$	${ }^{1}$	${ }^{-3}$	。	。	。	。	。	－	0	2	－ 3	${ }^{-3}$	
9500	9550	。	${ }_{-1}$	－ 1	－ 1	${ }^{-3}$	。	。	。	。	。	。	。	2	－3	－3	M Mor（utirig and
9550	9600	\bigcirc	－	－	－	${ }^{-3}$	。	。	－	0	0	－	0	2	${ }^{-3}$	3	
9600	9650	－	－	－	－ 1	${ }^{-3}$	－ 1	．	－	－	。	－	－	2	4	4	Potenalal conpessile maeral．
9650	9700	－	。	1	－	${ }^{-3}$	－	。	－	0	－	－	。	2	4	4	Potental compesssle materal．
9700	9750	－	－	－ 1	－ 1	${ }^{-3}$	－ 1	。	0	0	－	－	。	2	4	4	Potentala compessile materal．
9750	9800	－	－	－	－	${ }^{-3}$	－1	－	－	－	－	。	。	2	4	4	Potential compesssile materal．
9800	9850	。	－	${ }^{-1}$	－	${ }^{-3}$	－ 1	－	－	－	0	0	。	2	4	4	Potentala compessslie materal．
9850	9900	。	－	－ 1	－ 1	${ }^{-3}$	－	－	－	－	。	。	－	2	4	4	Potenata conpesstle materal．
9900	9950	。	0	－ 1	－ 1	${ }^{3}$	－ 1	。	－	－	。	。	。	－	4	4	Potentala conpesstle materal
9950	10000	－	－ 1	－	－	${ }^{-3}$	${ }^{-1}$	－	－	－	。	。	。	2	4	4	Potentalat conpesssle materal
10000	10050	－	－	1	－	${ }^{3}$	－2	－	－	－	－	－	。	2	．	－	Potentalat compesslle materal
10050	10100	0	－	－	－	${ }^{-3}$	-2	－	－	0	－	－	0	2	s	－	Potentala conpessible materal．
10100	10150	0	-1	－	－	${ }^{-3}$	－	－	－	－	0	。	。	2	4	4	Potentatal conpessble materal．
10150	10200	0	－1	－	－	${ }^{-3}$	－	－	。	－	－	－	0	2	4	4	Potentala conpessile materal．
10200	10250	0	－	4	－ 1	${ }^{3}$	－	－	0	－	－	。	0	2	4	4	Potental compesstibe materal．
10250	10300	。	${ }_{-1}$.$_{1}$	${ }^{1}$	${ }^{-3}$	－ 1	。	。	。	。	。	。	．	${ }^{-3}$	${ }^{3}$	
10300	10350	。	${ }_{-1}$	${ }_{-1}$	${ }^{-1}$	${ }^{-3}$	－ 1	。	。	。	。	。	。	1	${ }^{3}$	${ }^{3}$	
10350	10400	。	${ }_{-1}$	${ }_{1}$	${ }_{-1}$	${ }^{-3}$	${ }_{-1}$	。	。	。	。	。	。	－1	${ }^{-3}$	${ }^{3}$	
10400	10450	。	${ }_{-1}$	－ 1	${ }_{-1}$	${ }^{-3}$	－ 1	。	。	0	。	。	。	－	3	3	
10450	10500	。	${ }_{-1}$	－	－ 1	${ }^{-3}$	－ 1	。	。	。	。	。	。	－1	${ }^{-3}$	${ }^{3}$	
10500	10550	。	${ }_{-1}$	${ }_{-1}$	${ }_{-1}$	${ }^{-3}$	${ }_{-1}$	。	。	。	。	。	。	－	${ }^{3}$	${ }^{-3}$	Poterat compl
10550	10600	。	。	－	1	${ }^{-3}$	－ 1	。	。	。	。	。	。	－ 1	${ }^{-3}$	${ }^{3}$	Preental compessile meteral．Paratal ffine
10600	10650	。	。	${ }_{-1}$	${ }_{-1}$	${ }^{-3}$	${ }_{-1}$	。	。	－	。	。	。	1	3	${ }^{-3}$	
10650	10700	。	${ }_{-1}$	${ }_{-1}$.1	${ }^{-3}$	－ 1	－	。	0	。	。	。	1	3	${ }^{-3}$	
10700	10750	。	${ }_{-1}$	${ }_{-1}$.$_{1}$	${ }^{-3}$	． 1	。	。	。	。	。	。	． 1	${ }^{-3}$	${ }^{3}$	
10750	10800	。	${ }_{-1}$	${ }_{-1}$	${ }_{-1}$	－3	${ }_{-1}$	。	0	。	。	。	。	-1	${ }^{-3}$	${ }^{-3}$	
10800	10850	。	－	-1	－ 1	${ }^{3}$	－1	。	。	0	。	。	。	－ 1	3	${ }^{-3}$	
10850	10900	。	。	${ }_{-1}$	${ }_{-1}$	${ }^{-3}$	${ }_{-1}$	。	。	－	。	。	。	－ 1	${ }^{-3}$	${ }^{-3}$	Poerenta comp
10900	10950	。	。	${ }^{-1}$	－ 1	－3	－ 1	0	0	\bigcirc	\bigcirc	\bigcirc	。	－	${ }^{3}$	3	
10950	11000	0	0	－	－ 1	3	${ }^{-1}$	0	0	0	0	2	。	－	－ 5	－ 5	$\begin{aligned} & \text { Potential compressible material. Partial offline } \\ & \text { construction. } 275 \mathrm{KV} \text { crossing. SSE Pylon within } 100 \mathrm{~m} \text { of } \\ & \text { alignment ch } 10966 \text { and } 11098 \text {. } \\ & \hline \end{aligned}$
11000	11050	0	－	－ 1	－ 1	3	－ 1	0	0	0	0	2	。	－1	－ 5	． 5	Potential compressible material．Partial offline construction． 275 KV crossing．SSE Pylon within 100 m of allignment ch 10966 and 11098.
11050	11100	\bigcirc	－	－	．	${ }^{-3}$	－ 1	。	0	\bigcirc	\bigcirc	－	。	－1	． 5	－	Potential compressible material．Partial offline construction． 275 KV crossing．SSE Pylon within 100 m of alignment ch 10966 and 11098 ．
11100	11150	。	。	${ }_{-1}$	${ }_{-1}$	${ }^{-3}$	－ 1	。	。	。	。	2	。	－1	－	．	Potential compressible material．Partial offline construction． 275 KV crossing．SSE Pylon within 100 m of alignment ch 10966 and 11098 ．
11150	11200	。	1	${ }_{-1}$	1	${ }^{-3}$	－ 1	。	－	。	。	。	。	－	3	${ }^{-3}$	
11200	11250	。	。	－ 1	－ 1	${ }^{3}$	${ }^{-1}$	0	0	\bigcirc	0	． 1	。	－ 1	4	4	
11250	11300	。	0	${ }_{-1}$	． 1	${ }^{-3}$	－	－	0	0	。	－ 1	－	－	4	4	Sw Oistributo Mans．
11300	11350	。	。	${ }^{-1}$	${ }_{-1}$	${ }^{-3}$	－	－	－	。	。	－	－	2	4	4	SW Ostrtubuto Mans．
11350	11400	。	。	${ }_{-1}$	－	${ }^{-3}$	\bigcirc	\bigcirc	0	。	。	${ }^{-1}$	。	－2	4	4	sw ostributom Mans．
11400	11450	。	－	${ }_{-1}$.$^{-1}$	${ }^{-3}$	－	－	－	－	。	． 2	。	2	．	．	Smalt eatment worss cose to aligment．
11450	11500	。	－	-1	－	${ }^{3}$	\bigcirc	0	0	－	－	${ }_{-}$	。	－	4	4	sw ostrubuton Mans．
11500	11550	。	－	${ }_{-1}$	${ }^{-1}$	${ }^{-3}$	。	－	－	－	－	${ }^{-1}$	。	2	4	4	
11550	11600	－	－	－	${ }^{1}$	${ }^{-3}$	。	－	－	－	－	${ }^{-1}$	。	－ 2	4	4	sw ostrabitoon Mains．
11600	11650	。	，	-1	－ 1	${ }^{-3}$	－	－	－	－	\bigcirc	－	－		4	4	SW Ostribution Mans．
11650	11700	。	－	1	－	－3	．	0	0	0	0	－ 1	。	2	$\stackrel{4}{4}$	4	sw ostributom Mans．
11700	11750	。	0	1	－ 1	${ }^{3}$	。	0	。	。	0	－ 1	。	2	4	4	sw ostribution Mans．
11750	11800	。	。	1	1	${ }^{-3}$	。	－ 1	。	－	。	${ }^{1}$	。	－2	－	－	Smalal cureer combined online dstrupion．
11800	11850	。	。	－	${ }^{1}$	3	。	－	。	。	－	1	。		－	4	sw osathurum Mains．
11850	11900	。	。	－	${ }^{-1}$	${ }^{3}$	－	－	－	－	0	－ 1	。	2	4	4	sw oistrubuton Mains．
11900	11950	\bigcirc	0	－ 1	－ 1	－3		0	0	0	0	${ }^{-}$	。	－ 2	4	4	sw ostribution Mans．
11950	12000																

