

Rules
Total Score

+ Structures Score + Flooding Score (Average of L, M and
N) + Utilities score + Constructability Score (Minimum value
Then if total < or equal to - 9 then should be coloured red
because this represents possibility of 3 reds or 4 amber
If total is between -6 and -8 sould
If total is between -6 and -8 should be coloured a
since this could represent 2 reds
If total is between -3 and -5 sho

15100	15150	－	4	－	－	－	－	－	－	－		－	3	。	3		
15150	15200	－	4	4	－	－	－	－	－	－	－	－	，	－	3	3	
15200	15250	－	4	1	－	－	\pm	－	－	－	－	－	3	－	4	4	
15250	15300	－	4	－	－	－	4	－	\bigcirc	－	。	－	3	－	$\stackrel{\square}{4}$	4	
15300	15350	\bigcirc	1	－	－	－	4	－	－	－	－	\bigcirc	3	－	4	4	
15350	15400	－	－	1	－	－	－	－	－	－	－	－	3	－	3	3	
15400	15450	－	－	－	－	－	。	－	－	－	\bigcirc	\bigcirc			3	3	
15450	15500	－	－	－	\bigcirc	\bigcirc	－	－	－	－	\bigcirc	－	．	－	3	${ }^{3}$	
15500	15550	\bigcirc	\bigcirc	－	－	\bigcirc	－	\bigcirc	\because	\bigcirc	－	\div	－	－	3	3	
15550	15600	－	－	－	－	－	。	－	\bigcirc	－	－	\bigcirc	．	－	3	3	
15600	15650	－	－	－	。	。	。	－	－	－	－	－	3	－	3	3	
15650	15700	－	－	．	－	－	。	－	\bigcirc	－	。	－	，	－	3	3	
15700	15750	－	4	．	－	－	。	－	－	－	－	。	－	－	3	3	
15750	15800	－	4	4	－	。	。	－	－	－	－	－		－	3	3	
15800	15850	－	4	－	－	－	－	－	－	－	－	－	3	－	3	3	
15850	15900	－	1	－	－	－	－	－	－	－	－	－	3	－	3	3	
15900	15950	－	4	4	－	－	－	－	－	－	－	－	，	。	3	－	
15950	16000	－	4	－	－	－	。	－	－	－	－	－	，	－	3	3	
16000	16050	－	4	－	－	\bigcirc	－	－	\bigcirc	－	\bigcirc	\bigcirc	3	－	3	－	
16050	16100	－	4	－	－	。	。	－	－	－	。	－	－	－	3	－	
16100	16150	－	4	－	－	－	。	－	－	－	－	－	3	－	3	3	
16150	16200	－	－	－	－	。	。	－	－	－	。	－	3	－	3	3	
16200	16250	－	－	－	－	。	。	－	－	－	－	－	3	。	3	3	
16250	16300	－	4	－	－	－	－	－	－	－	－	－	3	－	3	3	
16300	16350	－	4	－	－	．	－	－	－	－	－	－	．	－	3	${ }^{3}$	
16350	16400	－	－	－	－	－	－	－	－	－	－	－	－	－	3	\cdots	
16400	116450	－	－	．	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	－	\bigcirc	3	－	－	3	
$\frac{16450}{16500}$	165550	\div	－	－	－	\div	\div	：	－	\because	－	\because	S	。	3	3	
16550	16600	\bigcirc	\bigcirc	．	－	－	－	\because	\bigcirc	－	－	\bigcirc	3	－	3	\cdots	
16600	16650	\bigcirc	\bigcirc	－	－	。	。	－	－	－	－	－	－	1	1	－	
16650	16700	－	－	$\stackrel{1}{4}$	－	。	。	－	－	－	－	。	1	．	4	－	
16700	16750	－	－	－	。	。	－	－	－	－	－	－	1	－	1	－	
16750	16800	－	－	－	。	－	。	－	－	－	－	。	1	．	4	－	
16800	16850	\bigcirc	－	－	。	。	${ }_{-}$	－	3	－	－	．	1	．	4	－	
16850	16900	－	－	－	。	。	${ }_{-}$	－	3	－	－	．	1	．	4	－	
16900	16950	。	－	．	。	。	－	－	3	－	。	。	，	．	4	．	
16950	17000	－	－	－	。	。	－	\pm	3	－	－	－	1	－	4	．	
17000	17050	－	－	\cdots	。	。	－	\pm	3	－	－	。	－	－	4	－	
17050	17100	\bigcirc	4	4	。	－	${ }_{-}$	－	3	。	－	－	4	－	3	－	
17100	17150	－	4	4	。	。	4	－	2	－	－	－	\pm	1	3	3	
17150	17200	－	4	－	。	－	4	\bigcirc	2	－	－	\bigcirc	1	1	3	3	
17200	17250	－		－	。	。	－	－	2	－	－	－	1	4	3	3	
17250	17300	－	4	4	－	－	4	\bigcirc	2	－	－	－	1	1	－	\cdots	
$\frac{17300}{17350}$	17350	－	4	．	－	－	4	－	2	－	－	\bigcirc	，	－	s	$\stackrel{s}{ }$	
$\frac{17350}{17400}$	17400	－	4	\cdots	－	\bigcirc	－	\bigcirc	2	－	－	\bigcirc	3	，	－	s	
17450	17500	\div	$\stackrel{ }{ }$	－	\div	\div	4	\div	2	\div	\div	\div	3	－	3	$\stackrel{5}{5}$	
17500	17550	－	－	－	。	。	${ }^{-}$	－	，	－	－	－	，	－	－	s	
17550	17600	－	－	－	。	－	－	－	－	－	。	－	3	－	4	4	
17600	17650	－	－	4	。	。	1	－	－	－	－	\bigcirc	\cdots	－	4	．	
17650	17700	。	－	－	。	。	。	－	－	－	－	。	．	－	3	3	
17700	17750	\bigcirc	－	－	－	－	－	－	－	－	0	$\begin{array}{\|c\|} \hline 0 \\ \hline 0 \end{array}$	\cdots	－	3	3	
$\begin{array}{\|l\|} \hline 17750 \\ \hline 17800 \\ \hline \end{array}$	178800	－	4	\cdots	－	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	3	－	3	3	
178800	17850	－	4	\cdots	。	－	－	－	－	：	－	－	3	－	3	3	
17900	17950	\bigcirc	4	${ }^{-}$	－	－	－	－	\bigcirc	－	\bigcirc	－	3	－	${ }^{3}$	3	
17950	18000	－	4	－	。	。	。	－	－	－	－	－	3	－	3	3	
18000	18050	。	－	－	－	。	。	－	－	－	。	。	，	－	3	，	
18850	18100	－	－	\cdots	－	－	－	－	－	－	－	－	3	－	，	3	
18100	18150	－	4	．	－	－	－	－	－	－	－	－	，	－	3	\cdots	
$\frac{18150}{18200}$	188200	\bigcirc	1	\cdots	\bigcirc	－	\bigcirc	－	－	－	－		3	－	－	3	
188200		\div	4	$\stackrel{1}{4}$	\because	\div	\div	\div	\div	\because	\because	\because	3	\div	3	3	
18300	18350	\bigcirc	4	．	。	－	。	－	－	－	－	－	3	－	3	3	
18350	18400	\bigcirc	－	－	－	－	－	－	\bigcirc	－	－	－	3	－	3	3	
18400	18450	\bigcirc	4	－	－	－	－	－	－	－	－	－	\cdots	－	－	3	
18450	18500	\bigcirc	－	－	－	。		－	－	－	－	－	1	2	2	2	
18500	18550	－	4	\cdots	－	－	－	－	－	－	－	－	\pm	2	2	－	
18550	18600	－	－	\cdots	。	－		－	－		－	。	．	2	2	－	
18600	18650	\bigcirc	4	－	－	－	－	${ }^{-1}$	\bigcirc	\bigcirc	\bigcirc	－	1	2	3	3	
18650	18700	－	4	．	－	。	。		－	－	－	－	1	2	3	3	
18700	18750	－	－	－	。	－	。	－	－	－	－	\bigcirc	4	2	2	2	
18750	18800	－	4	．	。	。			－		。	－	－	2	2	2	
$\frac{18800}{1885}$	18850	－	4	．	。	。	。	－	－	－	－	\bigcirc	－	2	2	2	
$\frac{18850}{18900}$	18900	\bigcirc	－	－	\bigcirc	\bigcirc	$\stackrel{1}{4}$	\bigcirc	－	－	\bigcirc	\bigcirc	－	，	${ }^{\text {a }}$	3	
18900		\div	$\stackrel{2}{2}$	${ }^{-}$	\div	\because		－	\div	\because	－	\div	1	\％	$\stackrel{4}{4}$	\because	
19000	19050	\bigcirc	2	4	－	－	$\stackrel{+}{4}$	\bigcirc	\because	－	－	\bigcirc	＋	2	$\stackrel{4}{4}$	－	
19050	19100	－	2	．	。	－	．	－	－	－	。	－	3	－	s	s	
19100	19150	－	2	．	－	－	－	－	－	－	－	－	3	－	4	．	
19150	19200	－	4	4	－	－	－	－	－	－	－	－	，	－	3	，	
$\frac{19200}{19250}$	19250	\bigcirc	－	\cdots	－	\bigcirc	\bigcirc	－	－	－	－	－	\cdots	－	3	3	
		－	${ }_{4}$	．	－	－		－	－	－	－	－	，	－	3	3	
19350	19400	\bigcirc	4	4	－	－	－	\div	\because	\because	\because	－	3	－	3	3	
19400	19450	。	4	－	。	－	。	－	－	－	－	－	－	－	3	3	
19450	19500	－	4	．	。	－	。	－	－	－	。	。	3	－	3	－	
19500	19550	\bigcirc	4	4	－	－	－	－	－	－	－	－	，	－	3	3	
$\frac{19550}{1960}$	19600	－	4	\cdots	－	\bigcirc	－	\bigcirc	－	－	－	－	1	2	2	2	
$\frac{19600}{19650}$	19650	－	－	－	－	－	－	－	－	－	－	－	－	2	2	2	
$\frac{19650}{1970}$	19700	－	－	－	－	－	－	－	－	－	－	－	－	，	2	\sim	
19750		\div	\div	$\stackrel{1}{4}$	－	\div		\div	\div	－	\div	\div	1	$\stackrel{\square}{2}$	$\stackrel{2}{3}$	$\stackrel{2}{3}$	
19800	19850	\bigcirc	－	\cdots	－	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	，	－	3	3	
19850	19900	－	－	．	－	－	。	－	－	－	－	－	3	－	3	3	
19900	19950	－	4	\cdots	－	－	－	－	－	－	－	－	3	－	3	3	
19950	20000	－	4	4	－	－	－	－	－	－	－	－	\cdots	－	3	\cdots	
$\frac{20000}{20050}$	20050	\bigcirc	4	\cdots	－	－	\bigcirc	\bigcirc	－	－	－	\bigcirc	，	\bigcirc	3	3	
20050	20100	－	4	\cdots	－	－	－	\bigcirc	－	－	－	－	\cdots	－	3	3	
20150	20200	\div	\div	4	\div	，	。	3	${ }_{3}$								
20200	20250	－	\bigcirc	．	－	－	。	－	－	－	－	。	3	－	3	3	
20250	20300	－	－	．	－	－	。	－	－	－	。	。	3	－	3	3	
20300	20350	－	－	．	－	－	。	－	－	－	－	。	3	－	3	3	
20350	20400	－	\bigcirc	\cdots	－	－	－	－	－	－	－	－	－	－	3	${ }^{3}$	
20400	20450	－	－	－	。	－	。	－	－	－	－	。	．	－	3	－	
20450	20500	。	－	，	－	－	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	3	\bigcirc	－	${ }^{3}$	
20500	20550	\bigcirc	\bigcirc	－	－	\because		\div	－	－		\div	S	－	3	3	
20600	20650	\bigcirc	－	4	－	．	\bigcirc	\bigcirc	\because	－	\bigcirc	\bigcirc	，	－	3	3	
20650	20700	－	4	．	－	－	。	－	－	－	－	－	3	－	3	－	
20700	20750	－	－	4	－	－	－	－	－	－	－	－	\cdots	－	－	\cdots	
20750	20800	－	4	－	－	\bigcirc	－	－	－	－	－	－	3	－	3	3	
20800	20850	－	－	1	－	－	－	－	－	－	－	－	．	－	－	3	
20900	20950																

Rules
Total Score
Structures Score + Flooding Score (Average of L, M and
$\mathrm{N})+$ Utilities score + Constructability Score (Minimum value
Then if total < or equal to -9 then should be coloured red

total is between -6 and -8 should be coloured
since this could represent 2 reds

5200	5250				4			－	－	－	－	－	3	－	－	s	Alignment length scoring skewed by one short alignment out of 4 ． bendiness dictated by high impact areas－ 1020 m curves could be increased． Level difference due to slopes of existing topography． Construction access score could be revised downwards．
5250	5300			－	．	．	．	．	。	－	．	。	．	。	．		$\begin{aligned} & \text { Level difference due to slopes of existing topography. } \\ & \text { Construction access score could be revised downwards. } \end{aligned}$
5300	5350	2			－	－	－	。	。	。	。	S	3	。	．		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． Windfarm could be avoided depending on offset parameters require
5350	5400	－		2	．	．	2	．	．	．	。	．	3	。	，		shment length scoring skewed bp one short alignmem out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Level difference due to slopes of existing topography． Cutting $>19 \mathrm{~m}$ in unidentified material．
5400	5450	．	3	2	．	－	2	。	．	．	。	2	3	。	．		A／gnment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Level difference due to slopes of existing topography． SSE Pylon within 100 m of alignment．
5450	5500				－	＋	2	．	．	．	．	．	．	。	，	，	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． Construction access score could be revised downwards． Cutting $>19 \mathrm{~m}$ in unidentified material．
5500	5550	2	．	2	－	－	2	。	．	．	。	．	．	。	，		Aignment length scoring skewed by one short alignment out of 4. Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Cutting $>19 \mathrm{~m}$ in unidentified material．
5550	5600	－	－	$=$	－	4	2	－	－	－	－	3	．	。	${ }^{10}$		Alignment length scoring skewed by one short alignment out of 4 ． bendiness dictated by high impact areas－ 1020 m curves could be increased． due to slopes of existing topography． Cutting $>19 \mathrm{~m}$ in unidentified material． Windfarm could be avoided depending on offset parameters required．
5^{5600}	${ }^{5650}$		3	2	－	．	2	。	．	。	。	。	，	。	，		Alignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas－ 1020 m curves could be increased． Level difference due to slopes of existing topography． Cutting $>19 \mathrm{~m}$ in unidentified material．
5650	5700	2	S	2	4	－	2	－	．	．	。	．	3	。	，	，	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Level difference due to slopes of existing topography． Cutting $>19 \mathrm{~m}$ in unidentified material．
5700	5750					．		。	。	。	。						Aisnment length scoring skewed byone short alignmem out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． SSE Pylon within 100 m of alignment as well 275 kV crossing Cutting $>19 \mathrm{~m}$ in unidentified material．
5750	5800	$=$	．	2	．	－	2	。	。	。	。	2	3	。	．	s	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． SSE Pylon within 100 m of alignment as well 275 kV crossing Cutting $>19 \mathrm{~m}$ in unidentified material．
5800	5850	－	3	2	．	．	2	－	。	．	\bigcirc	2	，	。	．		Ahgnment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． Construction access score could be revised downwards． SSE Pylon within 100 m of alignment as well 275 kV crossing Cutting $>19 \mathrm{~m}$ in unidentified material．
5850	5900	2	3	－	－	．	2	－	。	。	。	2	．	。	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves Level difference due to slopes of existing topography． Construction access score could be revised downwards． SSE Pylon within 100 m of alignment as well 275 kV crossing． Cutting $>19 \mathrm{~m}$ in unidentified material．
5900	5950		3	2	－	．	2	。	．	．	。	2		。	．		Wignment lengen scoring skewed by one short alignmem out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． SSE Pylon within 100 m of alignment as well 275 kV crossing． Cutting $>19 \mathrm{~m}$ in unidentified material．
5950	6000			2	1	．	－	。	。	。	。	2	，		．		Alignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． Construction access score could be revised downwards． SSE Pylon within 100 m of alignment as well 275 kV crossing
6000	6050	2	2	2	－	．	－	－	－	－	－	2	3	。	．	－	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． SSE Pylon within 100 m of alignment as well 275 kV crossing．
6050	6100		2	2	－	－	－	。	－	。	\bigcirc	－	3	。	．	．	AJignment length scoring skewed by one short alignment out of 4 ． Sendiness dictated by high impact areas－ 1020 m curves Level difference due to slopes of existing topography． Construction access score could be revised downwards． SSE Pylon within 100 m of alignment as well 275 kV crossing．
$\frac{6100}{6150}$	6150	，	2	2	4	4	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	－	S	S	
$\begin{array}{\|c} 6150 \\ 6200 \\ \hline \end{array}$	6200	$:$	2	2	$\stackrel{1}{4}$	1	－	－	－	－	\bigcirc	\div	，	：	${ }_{5}$	${ }_{5}$	
6250	6300	2	4	2	4	4	\bigcirc	\bigcirc	－	－	\bigcirc	－	．	－	4	4	
6300	6350	\sim	4	2	1	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	。	$\stackrel{1}{4}$	4	
68350	${ }^{6400}$	\sim	4	$\stackrel{2}{2}$	1	1	－	\div	\div	－	\div	\div	3	－	4	4	
6450	6500	2	－	$\stackrel{2}{2}$	4	4	\bigcirc	\because	\div	\div	\div	\bigcirc	3	\bigcirc	4	4	
${ }_{65500}^{650}$	${ }_{6600}^{650}$		。	2	－	1	3	－	。	。	。	。	3	。	，	，	Arignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Bendiness dictated by high impact areas -1020 m curves Construction access score could be revised downwards． Embankment＞5m on peat
${ }^{65500}$	${ }^{6600}$	2	。	2	．	－	，	。	。	。	．	。	3	。	，	，	Alignment length scoring skewed by one short alignment out of 4 ． bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could Embankment＞5m on peat．
${ }^{6650}$	${ }^{6600}$		4	2	－	－	．	－	－	。	－	－	3	。	\rightarrow	，	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Embankment $>5 \mathrm{~m}$ on peat nt $>5 \mathrm{~m}$ on peat．
	${ }^{6750}$	2	4	2	4	4	3	－	－	－	\bigcirc	－	－		\rightarrow	，	AIgnment length scoring sexewd by Bendiness dictated by high impact areas－ 1020 m curves could be increased． Constrution access hore could be revised downwards． Embankment＞5m on peat．
$\frac{6700}{6750}$	6750	\cdots	4	2	－	${ }_{-}$	\bigcirc	－	－	－	\div	－	3	。	$\stackrel{\square}{4}$	$\stackrel{\square}{4}$	
8800	6850	2	－	2	4	4	．	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	．	－	$\stackrel{4}{4}$	4	
68500	6900	，	4	2	4	$\stackrel{1}{4}$	－	\bigcirc	－	\bigcirc	\bigcirc	－	，	－	4	4	
6950		$\stackrel{2}{2}$	4	2	1	4	\div	\div	\div	\div	\div	\div	$\stackrel{3}{3}$	－	4	4	
7000	7050	2	4	2	4	－	－	－	－	－	－	－	$\stackrel{3}{ }$	－	4		
7050	7100	2	$\stackrel{+}{4}$	2	－	4	\div	－	－	－	\div	\div	．	－	4	4	
7150	7200	－	－	2	4	\therefore	\therefore	\div	\div	\div	\div	\div	S	\bigcirc	4	$\stackrel{4}{ }$	
7200	${ }^{7250}$						2	－	。	－		－	，	。	\rightarrow		
7250	7300																AIgnment tengts scoring seewe by one shor alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． midenitited matefal

9550	9600							－	－	－	－	－		。	7		
9600	9650							．	．	．	．	．		。	，		Wismment kenght scaring seeved by one shorta tignment out of 4 ． evel difference due to slopes of exsting topography． Construction access score could be revised downwards． Rock cuttings $>39 \mathrm{~m}$ ．
9650	9700					－		．	．	．	．	。	3	。	，		Arignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas－ 1020 m curves could be increased． Level difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
9700	9750					－		．	．	．	．	．		。	，		Jignment length scoring sk sendiness dictated by high impact areas－ 1020 m curves could be increased． Level difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
9750	9800					．		．	。	．	．	．	，	。	，		Alignment length scoring skewed by one short alignment out of 4 ． endiness dictated by high impact areas－ 1020 m curves could be increased． evel difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
9800	9850					．		。	。	－	．	．		。	，	，	Alignment length scoring skewed by one short alignment out of 4 ． Sendiness dictated by high impact areas－ 1020 m curves could be increased． evel difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ． \qquad
9850	9900					4		．	。	。	。	。			，		
9900	9950			：		－		．	。	－	．	。			．	．	Alignment length scoring skewed by one short alignment out of 4 ． endiness dictated by high impact areas－ 1020 m curves could be increased． evel difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
9950	10000							．	。	。	．	．			．		Wignment length scoring skewed by one short alignment out of 4 ． endiness dictated by high impact areas -1020 m curves could be increased． Construction access store to slopes of exsting topography． Rock cuttings $>39 \mathrm{~m}$ ．
10000	10050			2	\cdots	－	3	．	－	．	－	。		。	．	．	Aignment length scoring skewed by one short alignment out of 4 ． endiness dictated by high impact areas－ 1020 m curves could be increased． evel difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
10050	10100					．		。	．	。	．	．		。	．		alignment length scoring skewed by one short alignment out of 4 ． Sendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised dowmward Rock cuttings $>39 \mathrm{~m}$ ．
10100	10150		3	2	－	．	2	．	。	－	．	。	，	。	，	－	Alignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas－ 1020 m curves could be increased． evel difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
10150	10200			2	－	．		。	．	。	。	．	－	。	，		Nignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
10200	10250		－	2	4	4	2	。	－	－	－	。	，	。	，	，	Alignment length scoring skewed by one short alignment out of 4 ． endiness dictated by high impact areas -1020 m curves could be increased． evel difference due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
10250	10300		3	2	．	．	2	．	－	－	－	－	－	。	，	，	Jignment length scoring skewed by one short alignment out of 4 ． Sendiness dictated by high impact areas－1020m curves could be increased． Constructionce due to slopes of existing topography． Rock cuttings $>39 \mathrm{~m}$ ．
10300	10350	2	2	2	4	4	\because	\div	\div	－	\div	\because	3	－	\because	．	
10400	10450	$\stackrel{2}{2}$	4	2	4	．	\div	\div	\div	\div	\div	\div	S	\div	$\stackrel{4}{4}$	4	
10450	10500	－	－	2	．	．	－	－	－	－	－	\bigcirc	．	－	4	4	
10500	10550	2	－	2	4	．	－	－	－	－	－	－			4	$\stackrel{4}{4}$	
10550		2	－	$\stackrel{2}{2}$	4	－	\bigcirc	！	！	！	－	\because	．	－	2	2	
10650	10700	2	1	2	．	－	\bigcirc	－	\bigcirc	－	\bigcirc	－	－	－	2		
10700	10750	2	．	－	．	．	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	．	1	2	2	
10750	10800	－	4	2	4	4	－	－	－	－	－	\bigcirc	－	\pm	2	2	
10800	10850	2	－	\therefore	\cdots	－	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	，	－	\triangle	4	
10850	10950	2	\div	－	4	4	\bigcirc	\div	－	\bigcirc	\bigcirc	\bigcirc	－	\div	\checkmark	4	
10950	11000	2	－	2	．	－	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	3	－			
11000	11050	2	4	2	4	．	－	－	－	－	－	－	3	－	4	4	
$\frac{11050}{11100}$	11100	2	1	，	．	\cdots	4	－	－	－	－	－	＋	－	5		
11100	${ }^{11150}$	2	2	2	－	．	2	。	．	。	－	．	．	。	\rightarrow	，	Sendiness dictated by hishinimpaca seress－102am curves could be incesesed．
11150	11200		2	2	．	．	2	．	。	－	．	．	．	。	，	，	Alignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas－ 1020 m curves could be increased． Construction acce to slopes of existing topography． Embankments $>39 \mathrm{~m}$ in unidentified material
${ }^{11200}$	${ }^{11250}$			2	－	．	2	。	．	。	。	。	，	。	，	，	Nignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas－ 1020 m curves could be increased． Construction acest to slopes of existing topography． Embankments $>39 \mathrm{~m}$ in unidentified material
11250	11300		．	2	－	．	2	－	。	－	．	．	3	。	，	，	lignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas－ 1020 m curves could be increased． Construction due to slopes of exsting topography． Embankments $>39 \mathrm{~m}$ in unidentified material．
11300	11350				．	－	2	。	．	。	．	．	．	。	，		Jignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas－ 1020 m curves could be increased． Construction acce storopes of existing topography． Embankments $>39 \mathrm{~m}$ in unidentified material
11350	11400		．	2	．	－	2	－	。	－	－	。	3	。	，	，	Dignment length scoring skewed by one short alignment out of 4 ． Sendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access store con exsting topography． tmbankments $>39 \mathrm{~m}$ in unidentified material．
11400	11450				．	．	3	．	．	－	．	。	3	。	．		aignment length scoring skewed by one short alignment out of 4 ． Sendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Embankments $>39 \mathrm{~m}$ in unidentified material．
11450	11500				．			。	。	，	．	．	3	。	．		Alignment length scoring skewed by one short alignment out of 4 ． endiness dictated by high implact areas -1020 m curves could be increased． evel difference due to slopes of existing topography． Embankments $>39 \mathrm{~m}$ in unidentified material．
11500	11550		3		4	4	3	－	。	\bigcirc	－	－	．	。	S		ajignment length scoring skewed by one short alignment out of 4 ． Sendiness dictated by high impact areas -1020 m curves could be increased． evel difference due to slopes of exsting topography． Embankments $>39 \mathrm{~m}$ in unidentified material，
11550	11600	2	3	2	．	4	2	－	－	－	－	－	－	－	－	－	边
11600	11650	－	3	－	4	4	2	－	－	－	－	－	－	－	s	－	
11650	11700	2	3	－	－	－	－	－	－	\％	－	－	$\stackrel{-}{-1}$	\pm	s	－	
11750	11800		3	－	．	4	2	－	\bigcirc	－	－	\because			${ }^{5}$		\％
11800	11850		3	2		4			\bigcirc	－	－	\bigcirc		1	5	．	
11850	11900																

11900	11950	2		2	4	－	4	－	。	－	。	－	．	．	4	4	
11950	12000	2	2	2	－	－	1	－	－	－	。	－	－	1	4	4	
12000	12050	2	2	2	4	4	。	－	－	\bigcirc	－	－	－	1	3	3	
12050	12100	2	1	2	－	－	－	－	－	．	－	－	1	．			
12100	12150	2	1	2	－	\cdots	。	－	－	－	\bigcirc	－	．	1	2	2	
12150	12200	2	。	2	－	－	。	\because	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	2	2	
12200	12250	2	－	2	－	－	。	－	\bigcirc	－	－	－	－	1	2	2	
12250	12300	2	4	2	－	－	。	－	－	－	－	\bigcirc	－	。	4	4	
12300	12350	2	1	2	－	－	－	－	－	－	－	－	3	－	s	s	
12350	12400	2	1	2	4	\cdots	－	－	－	－	－	－	3	－	5		
12400	12450	2	1	2	－	\pm	－	－	－	－	－	－	3	。	5	s	
12450	12500	：	：	： 2	－	－	－	－	－	－	－	－	．	。	\rightarrow	\rightarrow	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Level difference due to slopes of existing topography． Cutting $>19 \mathrm{~m}$ in unidentified material．
12500	12550	2			－	．	－	。	．	。	。	．	，	。	．	s	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increase Level difference due to slopes of existing topography． Construction access score could be revised downwards． Cutting $>19 \mathrm{~m}$ in unidentified material．
12550	12600							．		。	。	。	，	。	．	s	Aignment length scoring skewed by one short alignment out of 4 revel difference Construction access score could be revised downwards． Cutting $>19 \mathrm{~m}$ in unidentified material．
12600	12650	2		： 2	4	．		．	．	－	。	．	，	。	．	s	Alignment length scoring skewed by one short alignment out of 4 ． and differencted by high impact areas－ 1020 m curves could be increase Level difference due to slopes of existing topography． Cutting $>19 \mathrm{~m}$ in unidentified material．
12650	12700								．	。		。	，		－	．	Arignment length scoring skewed by one short alignment out of 4 ． bendiness dictated by high impact areas－ 1020 m curves could be increase Construction access to slopes of exsting topography． Cutting $>19 \mathrm{~m}$ in unidentified material．
12700	12750	2	2	2	4	1	1	－	－	－	－	－	3	－	．	．	Cutting $>19 \mathrm{~m}$ in unidentified material． Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increase Level difference due to slopes of existing topography． Cutting $>19 \mathrm{~m}$ in unidentified material．
12750	12800			2	．	－		。	－	－	。	－	3	。	－	．	Aignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increase Level difference due to slopes of existing topography． Cutting $>19 \mathrm{~m}$ in unidentified material．
12800		2	2	2	－	－	－	\bigcirc	－	－	\bigcirc	－	3	－	5	5	
$\begin{aligned} & 12850 \\ & \hline 12900 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 12900 \\ \hline 12950 \\ \hline \end{array}$	2	4	2	4	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\because	3	\bigcirc	4	1	
112900	112950	$\stackrel{2}{2}$	1	2		－	\bigcirc	\div	\div	\bigcirc	\div	\div	．	。	4	4	
13000	13050	2	－	2	－	$\stackrel{1}{4}$	。	－	－	。	。	－	3	－	\triangle	4	
13050	13100	2	－	2	4	4	－	－	－	－	－	－	3	－	4	$\stackrel{1}{4}$	
13100	13150	$\stackrel{2}{2}$	－	2	－	$\stackrel{-}{4}$	－	\bigcirc	－	－	\bigcirc	－	，	－	4	4	
13200	13250	2	4	${ }^{2}$	4	－	\div	\div	－	\div	－	\div	3	－	$\stackrel{4}{4}$	$\stackrel{4}{4}$	
13250	13300	2	，	2	－	$\stackrel{1}{4}$	${ }_{-}$	\bigcirc	\bigcirc	－	\bigcirc	－	3	－	－	3	
13300	13350	2	4	2	．	．	1	－	。	。	。	－	3	－	s	s	
13350	13400	2	4	2	4	${ }^{-}$	．	－	。	。	。	－	3	－	s	s	
13400	13450	－	1	$\stackrel{2}{2}$	4	.	4	－	－	－	－	－	，	－	s	－	
13450	13500	2	4	2	－	．	－	－	－	。	－	。	3	－	－	${ }^{5}$	
13550	13600	2	1	2	1	－	1	\div	\div	\div	\div	\div	${ }^{3}$	－	${ }_{5}$	$\stackrel{5}{5}$	
13600	13650	2	－	2	－	$\stackrel{1}{4}$	－	－	－	。	。	－	3	－	－	s	
13650	13700	2	1	2	－	－	－	－	－	。	。	－	3	－	－	S	
13700	13750	2	4	\therefore	4	．	－	－	－	。	－	－	3	－	4	4	
13750	13800	2	1	2	－	$\stackrel{1}{4}$	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	－	$\stackrel{4}{4}$	4	
13850	13900	$\stackrel{2}{2}$	$\stackrel{1}{ }$	$\stackrel{-}{2}$	－	－	\div	\bigcirc	－	\div	－	\div	，	\bigcirc	$\stackrel{4}{4}$	4	
13900	13950	2	－	，	－	$\stackrel{1}{4}$	。	－	－	。	。	－	3	－	$\stackrel{4}{4}$	4	
13950	14000	2	－	2	．	－	－	－	－	。	。	\bigcirc	3	－	4	4	
14000	14050	2	－	2	4	\cdots	－	－	－	。	。	－	3	－	4	4	
14050	14100	2	1	2	4	$\stackrel{1}{4}$	－	－	－	－	－	－	3	．	4	4	
14100	14150	2	－	－	．	－	－	－	－	－	\bigcirc	－	${ }^{3}$	。	$\stackrel{1}{4}$	$\stackrel{4}{4}$	
14200	14250	2	4	$\stackrel{2}{2}$			\div	\div	\div	\div	\div	\div	3	－	$\stackrel{4}{4}$	4	
14250	14300	2	4	2	4	4	－	－	－	－	。	－	．	－	4	4	
14300	14350	$\stackrel{2}{2}$	4	2	4	4	－	－	－	－	－	－	3	－	4	4	
14350	14400	2	4	2	1	$\stackrel{1}{4}$	$\stackrel{1}{4}$	\bigcirc	－	\bigcirc	－	\bigcirc	，	－	s	5	
14450	14500	2	4	$\stackrel{2}{2}$	1	1	\div	\div	\div	\div	\div	\div	${ }^{3}$	－	$\stackrel{5}{4}$	${ }_{4}$	
14500	14550	2	1	2	．	．	。	－	。	。	。	－	3	－	4	4	
14550	14600	2	1	－	1	－	。	－	．	。	。	。	．	。	4	4	
14600	14650	$\stackrel{2}{2}$	－	：	4	．	－	－	－	－	－	－	$\stackrel{3}{ }$	－	4	$\stackrel{1}{4}$	
14700	14750	$\stackrel{2}{2}$	4	：	－	$\stackrel{1}{1}$	\div	\div	\div	－	\div	\because	3	。	$\stackrel{\square}{4}$	$\stackrel{5}{4}$	
14750	14800	2	。	，	－	$\stackrel{-}{4}$	。	－	－	。	。	－	3	。	$\stackrel{4}{4}$	$\stackrel{ }{ }$	
14800	18850	2	－	$=$	1	1	．	－	－	．	．	－	2	2	3	3	
14850	14900	2	－	$\stackrel{2}{2}$	1	1	。	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	2	2	，	3	
14950	15000	$\stackrel{2}{2}$	\bigcirc	$\stackrel{2}{2}$	1	$\stackrel{1}{4}$	\bigcirc	\div	\bigcirc	－	\div	\div	$\stackrel{2}{2}$	2	${ }^{3}$	${ }^{3}$	
15000	15050	2	－	2	－	－	。	－	－	。	。	－	2	2	3	3	
15050	15100	2	\bigcirc	，	－	$\stackrel{-}{-}$	－	－	－	－	－	－	2	2	3	3	
15100	15150	2	－	\cdots	4	4	－	－	－	－	－	。	2	2	3	3	
15150	15500	2	$\stackrel{1}{4}$	$\stackrel{2}{2}$	1	$\stackrel{1}{4}$	－	\div	－	－	－	\div	2	2	3	3	
15250	15300	$\stackrel{2}{2}$	－	$\stackrel{2}{2}$	4	$\stackrel{-}{-1}$	\div	\bigcirc	\div	\bigcirc	\div	$\stackrel{-}{1}$	$\stackrel{2}{2}$	－	3	${ }^{3}$	
15300	15350	2	1	${ }_{2}$	\cdots	$\stackrel{+}{4}$	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	$\stackrel{1}{ }$	2	－	4	，	
15400	15450	$\stackrel{2}{2}$	4	：	－	$\stackrel{1}{4}$	\div	－	\bigcirc	\div	\div	\bigcirc	2	\bigcirc	${ }^{3}$	${ }^{3}$	
15450	15500	2	4	－	－	－	。	\bigcirc	－	－	\bigcirc	－	2	\bigcirc	3	3	
15500	15550	2	4	$=$	－	－	。	－	－	。	－	－	2	。	3	3	
${ }^{15550}$	${ }_{15650}^{15600}$	2		．								。		。	．		Wignment kenget scoring stewed by one short aligment out of 4 ．
${ }^{15600}$	${ }_{15700}^{15650}$			2	－	1	－	3	－	－	－	－	：	－	－	．	Alignment length scoring skewed by one short alignment out of 4 ． Construction access \＆disruption due to prozimity to Insch． Underbridge \＆Viaducts $>300 \mathrm{~m}$ due to railway，river \＆floodplains
				：	－	－	－	3	。	－	－	。	2	2	．	－	Alignment length scoring skewed by one short alignment out of 4 ． Construction access \＆disruption due to prozimity to Insch． Underbridge \＆Viaducts $>300 \mathrm{~m}$ due to railway，river \＆floodplains．
${ }^{15700}$	${ }_{15800}^{15750}$			2		．	．		。	－	。	－	2	2	，		Construction access \＆disruption due to prozimity to Insch． Underbridge \＆Viaducts $>300 \mathrm{~m}$ due to railway，river \＆floodplains
${ }^{15750}$	${ }^{15800}$			2	．	－	．	3	3	－	－	。	2	2	－	，	Construction access \＆disruption due to prozimity to Insch． Underbridge \＆Viaducts $>300 \mathrm{~m}$ due to railway，river $\&$ floodplains．
15800	15850																Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by hish impact areas 1020 m curves could be in Underbridge $\&$ Viaducts $>300 \mathrm{~m}$ due to railway，river $\&$ floo

15850	15900				1	－	1	3	3	。	－	－	2	2	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access \＆disruption due to prozimity to Insch． Underbridge \＆Viaducts $>300 \mathrm{~m}$ due to railway，river \＆floodplains
15900	15950				．	－	－	3	。	。	．	．	－	2	，	，	Underbridge \＆Viaducts $>300 \mathrm{~m}$ due to railway，river $\&$ floodplains．
15950	16000	2	1	2	－	．	－	－	－	－	－	－	2	2	4	4	
16000	16050	－	－	2	．	－	－	。	。	。	－	－	2	2	s	5	
16050	16100						2	－	。	．	－	－	2	2	－	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． 11 m embankment on compressible materials．
16100	16150	－	1	2	4	4	$\stackrel{-}{+}$	－	－	－	－	－	2	2	4	4	
16150	16200	\because	－	2	4	4	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	2	2	3	3	
16200	16250	2	4	2	－	－	2	－	－	。	－	－	2	2	s	－	
16250	16300							。	。	。	。	。	．	2	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access \＆disruption due to prozimity to Insch． Level difference due to slopes of existing topography．
16300	16350		3	2	．	．	2	．	。	。	．	．	2	2	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access \＆disruption due to prozimity to Insch． Rock cuttings $>19 \mathrm{~m}$ ． Level difference due to slopes of existing topography．
${ }^{16350}$	${ }^{16400}$		．	2	．	－	2	。	．	．	。	．	2	2	．	．	AIgnment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access a disfuption due to prozimity to Insch． Rock cuttings $>19 \mathrm{~m}$ ． Level difference due to slopes of existing topography．
16400	16450			2					。	．	。	。	2	2	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access \＆disruption due to prozimity to Insch． Rock cuttings $>19 \mathrm{~m}$－ Level difference due to slopes of existing topography．
${ }^{16450}$	16500	2	3	2	．	－	．	。	。	。	－	。	2	2	－	．	Arignment length scoring skewed by one short alignment out of 4． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access \＆disruption due to prozimity to Insch． Rock cuttings $>19 \mathrm{~m}$. Level difference Level difference due to slopes of existing topography．
16500	16550		3	－	．	－	－	－	．	\bigcirc	－	\bigcirc	－	．	．	．	
16550	16600	2	3	2	1	．	．	－	－	－	－	－	－	2	－	s	
$\begin{array}{\|l\|} \hline 16600 \\ \hline 16650 \\ \hline \end{array}$	$\begin{aligned} & \hline 16650 \\ & \hline 16700 \\ & \hline \end{aligned}$	2	${ }_{2}$	$\stackrel{2}{2}$	1	\therefore	\because	－	－	－	－	！	$\stackrel{2}{2}$	2	$\stackrel{5}{4}$	$\stackrel{5}{4}$	
16700	16750	2	2	2	4	－	\bigcirc	\bigcirc	\bigcirc	－	\div	\bigcirc	2	2	$\stackrel{4}{4}$	4	
16750	16800	2	4	2	4	4	－	－	－	－	－	－	2	2	3	3	
16800	16850	\sim	1	2	1	－	－	－	－	－	－	－	\sim	2	3	3	
16850	16900	\because	\bigcirc	2	4	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\div	，	\bigcirc	$\stackrel{4}{4}$	4	
16950	17000	2	－	2	－	－	\div	\div	\div	\div	\div	\div	S	\bigcirc	$\stackrel{4}{4}$	4	
17000	17050	\sim	1	2	．	．	－	－	。	。	－	。	3	。	4	4	
17050	17100	\therefore	4	2	1	1	－	－	－	－	－	－	3	－	4	，	
17100	17150	\therefore	4	2	－	1	－	－	－	－	\bigcirc	－	3	－	$\stackrel{4}{4}$	4	
17150	17200	$=$	－	2	4	－	。	－	－	－	。	－	3	。	4	4	
		2	2	2	1	1	1	－	－	\bigcirc	－	－	3	－	－	．	Alignment length scoring skewed by one short alignment out of 4 ． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
17250	${ }^{17300}$			2					。	－	\bigcirc		，	。	．	－	 \qquad
17300	17350	2	2	\therefore	4	－	－	－	－	－	－	－	3	－	－	s	
17400	17450	2	4	2	1	－	\div	\div	\bigcirc	\div	\div	\div	．	－	4	4	
17450	17500	2	－	：	4	－	－	－	－	－	－	－	${ }^{3}$	－	－	4	
17500	17550	2	1	2	4	4	－	－	－	－	－	－	3	－	4	4	
${ }^{17550}$	${ }^{17600}$	$=$	2	2	．	1	－	．	。	。	。	。	．	。	－	s	Wignment length scoring seweed by one shot alignment out ot 4 ．
17600	17650		－	2	．	－	－	－	\bigcirc	－	\bigcirc	\bigcirc	． 3	。	．	s	
17650	17700	2	4	2	1	．	－	－	－	－	－	－	，	－	4	4	
17700		$\stackrel{2}{2}$	$\stackrel{1}{4}$	$\stackrel{2}{2}$	1	$\stackrel{1}{1}$	\div	\div	－	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \end{array}$	－	！	${ }_{3}$	－	$\stackrel{4}{4}$	4	
17800	17850	2	4	2	1	－	－	\bigcirc	－	－	－	－	3	\bigcirc	$\stackrel{4}{4}$	$\stackrel{4}{4}$	
17850	17900	2	4	2	4	\cdot	－	－	－	－	－	－	．	－	$\stackrel{4}{4}$	4	
17900	17950	2	1	2	1	－	\pm	－	－	－	－	\bigcirc	3	－	s	s	
17950	18000	$\stackrel{2}{2}$	4	2	4	$\stackrel{1}{4}$	$\stackrel{1}{\square}$	\bigcirc	－	－	\because	\div	3	\bigcirc	$\stackrel{s}{4}$	$\stackrel{5}{4}$	
18050	18100	2	1	2	．	－	\bigcirc	\bigcirc	－	－	\div	－	．	2	${ }_{3}$	3	
18100	18150	2	4	2	1	－	－	－	－	－	－	－	1	2	3	3	
18150	18200	2	1	2	1	${ }^{-}$	－	－	－	－	－	－	－	2	3	3	
18200	18250	$\stackrel{2}{2}$	4	2	${ }^{-}$	－	－	－	\bigcirc	－	－	－	－	2	3	3	
18250	18800	$\stackrel{2}{2}$	○	$\stackrel{2}{2}$	4	${ }^{1}$	－	－	－	－	－	－	1	$\stackrel{2}{2}$	$\stackrel{3}{3}$	${ }^{3}$	
18350	18400	$\stackrel{2}{2}$	\bigcirc	$\stackrel{2}{2}$	1	$\stackrel{1}{1}$	\because	\div	\div	－	\div	\bigcirc	－	$\stackrel{2}{2}$	3	${ }^{3}$	
18400	18450	2	。	2	1	－	－	－	－	－	－	－	．	2	3	3	
18450	18500	2	4	：	4	－	－	－	－	－	－	－	－	2	\cdots	3	
18500	18550	2	1	2	－	－	－	－	－	－	－	－	－	2	3	3	
$\frac{18550}{18600}$	18600	$\stackrel{2}{2}$	4	2	－	\cdots	－	\div	－	－	\div	－	1	2	$\stackrel{4}{5}$	4	
18600		$\stackrel{2}{2}$	${ }_{2}$	$\stackrel{2}{2}$	$\stackrel{1}{4}$	$\stackrel{1}{4}$	$\stackrel{1}{4}$	\div	－	－	\div	\div	$\stackrel{1}{4}$	2	$\stackrel{s}{5}$	$\stackrel{5}{5}$	
18700	18750	2	2	2	－	$\stackrel{1}{ }$	－	－	\bigcirc	－	\bigcirc	－	1	2	${ }^{5}$	S	
18750	18800	2	2	2	4	－	${ }^{4}$	－	－	－	－	－	．	2	$\stackrel{5}{5}$	${ }^{5}$	
18800	18850	2	2	2	－	－	－	－	\bigcirc	－	－	－		2	，	s	
$\frac{18850}{18900}$	18900	－	2	－	1	－	－	－	－	－	－	－	－	2	－	s	
${ }^{18900}$	18950	2	2	2	．	\pm	2	－	．	。	－	－	．	2	－	．	
${ }^{18950}$	${ }_{10050}^{19000}$		3							－	．	．	．	2	．		Alignment length scoring skewed by one short alignment out of 4 ． Dendiness dictated by high impact areas－ 1020 m curves could be increased． Level difference due to slopes of Embankments on compressible and／or unidentified materials $>10 \mathrm{~m}$ ．
${ }^{19000}$	${ }_{19100}^{19050}$												．	2			Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Disruption to local access roads Embankments on compressible and／or unidentified materials $>10 \mathrm{~m}$ ．
19050	19100																Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Disruption to local access roads． Embankments on compressible and／or unidentified materials $>10 \mathrm{~m}$

19100	19150									－							Alignment length scoring skewed by one short alignment out of 4 ． Druption to local access roads． evel difference due to slopes of existing topography
19150	19200									。	。			2			Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Disruption to local access roads． Level difference due to slopes of existing topography Embankments on compressible and／or unidentiied materials $>10 \mathrm{~m}$
19200	19250	2	3	2	1	1	2	。	。	。	。	。	4	－	－	－	length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increase Disruption to local access roads． Embankments on co to slopes of existing topography． Embanments on compressible and／or unidentified materials $>10 \mathrm{~m}$
19250	19300			2		－	2	。	。	。	。	。	＋	2	－	．	Alignment length scoring skewed by one short alignment out of 4 ． sendiness dictated by high impact areas -1020 m curves could be increased． Disruption to local access roads． Embankments on compressible and／or unidentified materials $>10 \mathrm{~m}$ ．
19300	19350			2		＋	2	。	。	。	。	。		2	．	．	Aignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Disruption to local access roads． Embankments on compressible and／or unidentified materials $>10 \mathrm{~m}$ ，
19350	19400		3	$=$	－	－	－	。	。	。	－	。	1	2	．	．	Alignment length scoring skewed by one short alignment out of 4. Bendiness dictated by high impact areas -1020 m curves could be increased． Disruption to local access roads． Level differen Embankments on compressible and／or unidentified materials $>10 \mathrm{~m}$
19400	19450			2		－	2	。	。	。	。	。		2	．	．	
19450	19500			2			2		3	。	。	。		2	．	．	
19500	19550			－			2	．	3	。	。	．		2	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Disruption to local access roads． Embankments due to slopes of exsting topography． Alignment crosses floodplain．
19550	19600		2	2	－	－	2	－	3	－	－	－		2	．	．	
19600	19650			－		1	－		。	。	。	。	－	2	．	．	
19650	19700	2	4	2	4	－	－	－	．	－	－	－	－	2	3	3	
19700	19750	，	4	2	1	1	\bigcirc	－	－	\div	\bigcirc	\bigcirc	\pm	2	$\stackrel{3}{4}$	${ }^{3}$	
19800	19850	$\stackrel{-2}{2}$	4	2	－	$\stackrel{1}{4}$	－	－	\bigcirc	\div	－	\div	1	2	4	$\stackrel{4}{4}$	
19850	19900	2	－	2	．	－	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	1	2	4	4	
19900	19950	2	－	2	4	．	．	－	－	－	\bigcirc	．	－	2	4	\checkmark	
19950	20000	2	1	2	4	－	4	－	．	－	－	－	－	2	4	，	
20000	20050	2	\pm	2	${ }^{-}$	$\stackrel{-}{4}$	$\stackrel{1}{4}$	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc		2	，	，	
20050	20100	2	4	$\stackrel{2}{2}$	4	4	${ }^{-}$	－	－	\div	\because	－	1	2	$\stackrel{5}{4}$	$\stackrel{5}{4}$	
20150	20200	－	－	2	－	－	4	\bigcirc	－	－	\bigcirc	－	1	2	$\stackrel{4}{4}$	4	
20200	20250	2	4	2	－	－	4	\bigcirc	－	－	\bigcirc	。	4	2	．	4	
20250	20300	2	1	2	4	1	2	－	．	－	－	。	1	2	S	s	
20300	20350	2	．	2	1	－	－	－	。	－	－	。	3	－	4	4	
20350	20400	2	4	$\stackrel{2}{2}$	4	．	\because	－	\bigcirc	\div	\because	！	3	－	$\stackrel{4}{4}$	$\stackrel{4}{4}$	
20450	20500	2	4	．	－	1	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	3	－	5	s	
20500	20550	2	4	2	－	${ }^{-}$	．	－	。	\bigcirc	－	－	－	。	．	－	
20550	20600	2	1	2	${ }^{-}$	1	1	－	。	－	－	－	${ }^{3}$	．	－	s	
20600	20650	2	4	$\stackrel{2}{2}$	4	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	，	。	$\stackrel{4}{4}$	4	
20700		$\stackrel{2}{2}$	－	2	$\stackrel{1}{1}$	1	\bigcirc	\div	\div	\div	\div	\div	${ }^{3}$	\bigcirc	$\stackrel{4}{4}$	4	
20750	20800	2	4	2	4	$\stackrel{1}{4}$	－	－	。	－	－	．	3	－	$\stackrel{4}{4}$	4	
20800	20850	2	4	2	－	4	－	－	．	－	－	．	3	。	\triangle	4	
20850	20900	，	－	2	${ }^{-}$	$\stackrel{1}{4}$	－	－	－	－	\bigcirc	。	3	－	4	4	
20900	20950	$=$	－	2	4	1	\bigcirc	－	－	\div	\bigcirc	\bigcirc	3	\div	$\stackrel{4}{4}$	4	
21000	21050	2	\div	2	4	－	－	\div	\div	\div	\bigcirc	\div	．	－	4	4	
21050	21100	－	－	2	${ }^{-}$	${ }^{-}$	－	。	。	－	－	。	．	。	$\stackrel{4}{4}$	4	
21100	21150	2	－	2	4	4	－	．	－	－	－	－	3	。	4	4	
$\frac{21150}{21200}$	21200	2	，	$\stackrel{1}{2}$	${ }^{-}$	${ }^{-}$	－	－	－	\bigcirc	－	－	\cdots	－	$\stackrel{+}{4}$	4	
21200	21250	2	．	2	4	$\stackrel{1}{4}$	\bigcirc	－	－	－	\bigcirc	－	A	。	$\stackrel{4}{4}$	$\stackrel{4}{4}$	
21300	21350	2	1	$\stackrel{2}{2}$	1	1	－	\div	－	\div	\div	\div	\cdots	\cdots	${ }^{-3}$	3	
21350	21400	2	4	2	－	－	－	。	。	－	－	。	－	－	2	2	
21400	21450	2	4	2	．	．	－	－	－	－	－	。	\pm	．	－	2	
$\frac{21450}{21500}$	21500	2	4	2		1	－	－	－	\bigcirc	－	\bigcirc	\pm	$\stackrel{1}{4}$	$\stackrel{2}{2}$	2	
21550	21600	2	4	2	4	$\stackrel{1}{4}$	\div	\div	\div	\div	\div	\div	\cdots	－	$=$	$\stackrel{2}{4}$	
21600	21650	2	4	2	－	1	－	－	－	－	－	．	3	。	$\stackrel{4}{4}$	4	
$\frac{21650}{21700}$	21700	2	4	2	\pm	$\stackrel{1}{4}$	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	．	。	．	4	
21750	21800	2	4	2	1	$\stackrel{1}{4}$	\div	\div	\div	\div	－	\div	3	。	$\stackrel{4}{4}$	4	
21800	21850	2	4	2	4	4	－	－	。	－	－	。	3	－	$\stackrel{ }{ }$	4	
$\frac{21850}{21900}$	21900	2	4	2	，	$\stackrel{1}{4}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	，	。	$\stackrel{4}{4}$	，	
21950		2	1	2	1	\cdot	\div	。	－	\bigcirc	\bigcirc	．	3	\bigcirc	$\stackrel{4}{4}$	4	
22000	22050	2	1	2	－	－	－	－	－	－	－	－		－	4	4	
22050	22100	2	4	2	4	－	－	－	－	－	\bigcirc	－	\cdots	－	$\stackrel{.}{ }$	$\stackrel{1}{4}$	
22100	22150	2	－	2	4	1	－	。	。	－	－	。	\cdots	。	4	4	
22150	22200	2	＋	2	4	1	\pm	－	\bigcirc	\div	\bigcirc	\bigcirc	，	。	$\stackrel{5}{5}$	s	
22250	22300	2	4	2	－	1	1	－	\bigcirc	－	\div	\bigcirc	3	。	${ }^{5}$	${ }^{5}$	
${ }^{22300}$	${ }_{22400}^{22350}$			2		－		。	．	。	。	。	3	。	．	．	Alignment length scoring skewed by one short alignment out of 4 ．Bendiness dictated by high impact areas -1020 m curves could be increased．Construction access score could be revised dowwards．Construction access score could be revised downwards． Level difference due to slopes of existing topography．
														。			Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography． Levidierence duet to slopes of exsing topography
22400	22450												，	。	．	3	
22450	22500																 Bendiness dictated by high impact areas－ 1020 m curves could be increased

22500	22550	－2	－2	2	－	． 1	－	－	－	－	－	0	3	。	－	－	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves Construction access score could be revised downwards．
22550	22600	2	2	${ }^{2}$	－ 1	－	－	。	。	。	。	0	1	2	s	－	
22600	22650	－	2	－2	－	－	－	。	－	－	。	。	1	2	4	4	
22650	22700	2	1	：2	－	－	。	－	－	－	－	－	1	2	3	${ }^{3}$	
22700	22750	－2	－1	－2	－	－ 1	。	。	－	－	－	0	1	2	${ }^{3}$	3	
22750	22800	－2	1	2	－ 1	－	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	1	2	${ }^{-3}$	${ }^{3}$	
22800	22850	2	1	－2	－	． 1	－	－	－	－	－	0	1	2	3	${ }^{-3}$	
22850	22900	－2	1	－2	－	－	0	\bigcirc	。	。	。	0	1	2	${ }^{-3}$	${ }^{-3}$	
22900	22950	－2	1	2	－	－	－	－	－	－	－	0	1	2	${ }^{-3}$	${ }^{-3}$	
22950	23000	－2	1	2	－	－	－	－	－	－	－	－	1	2	${ }^{3}$	${ }^{-3}$	
23000	23050	－2	1	2	－	－	－	－	－	－	－	－	1	2	${ }^{3}$	${ }^{3}$	
23050	23100	－ 2	1	2	－	． 1	－	。	。	。	－	．	3	。	5	5	
23100	23150	2	。	2	． 1	－	。	。	－	。	－	－	3	。	4	4	
23150	23200	2	。	2	． 1	－	－	。	。	。	。	。	3	。	4	4	
23200	23250	－	1	－	－	．	。	－	－	－	－	－	3	。	4	4	
23250	23300	－2	－2	2	－	4	－	－	－	\bigcirc	。	－	3	。	－	．	Alignment length scoring skewed by one short alignment out of 4． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
23300	23350	－2	－2	－2	－	． 1	-1	－	。	。	。	。	3	。	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． opes of exsting topography．
23350	23400	－	－2	－	1	－	－	－	\bigcirc	。	。	0	3	。	－	－	Wigmen tenget secoring semed brone thot atigmen out ot 4
23400	23450	2	－2	2	1	1	－	\bigcirc	。	。	。	0	－3	。	－	．	Alignment length scoring skewed by one short alignment out of 4. Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
23450	23500	2	2	－2	－	－	－	。	。	。	。	。	－	。	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
23500	23550	2	1	－	-1	． 1	。	。	－	－	－	－	3	。	4	4	
23550	23600	－2	－	2	－	－	－	－	－	－	－	－	3	。	4	4	
23600	23650	2	－	－2	－	－	。	－	－	－	－	－	3	0	4	4	
23650	23700	－2	1	－2	－	1	－	－	－	0	－	－	3	。	4	4	
23700	23750	2	1	2	－	．	。	。	。	。	－	。	3	－	4	4	
23750	23800	－	${ }_{-}$	－	－	${ }^{-1}$		－	。	\bigcirc	－	－	3	。	4	4	
23800	23850																
23850	23900																

Rules
Total Score

+ Structures Score＋Flooding Score（Average of L，M and
+ Structures Score + Flooding Score（Average of L，M and
$\mathrm{N})+$ Utilities score + Constructability Score（Minimum value
Then if total＜or equal to－ 9 then should be coloured red

total is between -6 and -8 should be coloured
since this could represent 2 reds

								\qquad				c 部 品			$\begin{gathered} n \\ \\ \end{gathered}$		
					$\begin{aligned} & \text { 㺯 } \\ & \text { 害 } \end{aligned}$		0 0 0 $\stackrel{0}{0}$ $\stackrel{0}{3}$ $\stackrel{5}{3}$		$\begin{aligned} & \frac{7}{0} \\ & \frac{0}{0} \\ & \frac{0}{\square} \end{aligned}$			$\begin{aligned} & \text { ᄃ ㄷ } \\ & \text { 采 } \\ & \text { 品 } \end{aligned}$			$\begin{aligned} & \text {-1 } \\ & \underset{\underline{D}}{2} \end{aligned}$		$\begin{aligned} & \frac{o}{3} \\ & \frac{3}{3} \\ & \frac{3}{\overline{3}} \\ & \hline \end{aligned}$
0	50	－	－	－	－	3	4	－	－	－	－	－	－	3	．	5	
50	100	2	4	－	4	3	4	－	。	－	－	－	。	${ }^{3}$	．	． 5	
100	150	－	1	。	－	3	－	－	。	－	。	－	。	3	．	，	
150	200	\therefore	4	－	－	3	4	－	－	－	－	－	。	3	－	－	
200	250	2	-1	－	－	3	1	\bigcirc	。	－	－	－	。	3	－	．	
250	300	2	2	－	4	3	2	－	－	\bigcirc	－	。	－	3	\rightarrow	－	
300	350	2	－	－	－	3	2	3	3	－	－	－	。	3	12	${ }^{12}$	
350	400	2	2	－	1	3	2	3	${ }^{3}$	－	－	\cdots	－	3	${ }_{12}$	12	
400	450	2	2	－	1	3	2	3	3	－	。	。	。	3	－	$\text { . } 1$	
450	500	2	2	－	－	3	2	3	-3	．	。	。	。	3	－ 1	$. n$	
500	550	2	2	－	1	3	2	3	${ }^{3}$	－	。	。	。	3	－	－	
550	600	2	3	－	1	3	2	3	3	－	。	。	3	。	．11	．11	Vataterese wh
600	650	－	3	－	－	3	2	3	－	－	。	－	3	。	－ 10	${ }_{10}$	
650	700	－	3	－	－	3	2	3	－	－	－	－	3	。	－ 10	${ }_{10}$	
700	750	－	3	－	－	3	2	${ }^{3}$	－	－	。	－	3	。	${ }_{-10}$	${ }^{-10}$	
750	800	2	3	0	4	3	2	3	－	－	－	－	3	。	${ }^{-10}$	${ }^{10}$	
800	850	2	3	－	－	3	2	－	－	－	－	－	3	－	7	－	
850	900	2	3	。	．	3	3	－	－	－	。	。	3	。	．	．	Emen
900	950	2	3	\bigcirc	－	3	3	\bigcirc	－	－	－	0	3	。	\checkmark	．	Embankments up to 28.1 m on potentially compressible soils．Potential to lower alignment to mitigate so not upgraded to significant overall
950	1000	2	3	。	．	3	3	－	－	－	。	－	${ }^{3}$	。	－ 10	10	Endinimesturo
1000	1050	2	3	－	1	3	3	\bigcirc	－	－	－	。	3	。	－	．	
1050	1100	2	3	0	－	3	3	－	－	－	－	2	3	。	10	10	Estomiteses．
1100	1150	2	3	－	－	3	3	－	－	－	－	－	．	。	10	20	
1150	1200	－	3	。	－	3	：	－	－	－	。	－	3	。	\checkmark	．	
1200	1250																
1250	1300	$=$	3	－	1		2	－	－		－	：	3	－	，		Mineme
		2	3	－	1	3	2	－	－	－	－	2	3	－	－	\checkmark	
1300	1350	2	3	－	－	3	2	－	－	－	－	－	3	。	，	．	
1350	1400			－			：	－	－	－	－	－	3	。	，		
		2	3	－	－	3	2	－	－	－	－	－	3	－	7	\rightarrow	
1400	1450																
1450	1500	－		．	1		2	－	－	－	\bigcirc	－ 2	，	－	．	－	
1500	1550	－	2	。	1	3	1	－	\bigcirc	\because	\bigcirc	－ 2	1	1	．	－	
1550	1600	$\stackrel{2}{2}$	$\stackrel{-}{1}$	\bigcirc	－	3	－	－	－	－	。	。	1	1	－	2	
1600	1650	2	4	－	－	3	－	－	－	－	。	－	－	－	2	2	
1650	1700	2	1	－	1	3	2	－	－	－	\bigcirc	－	－	1	4	－	Cutios brom 3 32min
1700	1750	2	3	－	．	3	2	－	－	－	－	。	－	－	5	－	
1750	1800	2	3	－	－	3	2	－	－	\bigcirc	－	－	．	－	5	－	
1800	1850	2	3	－	．	3	2	－	－	－	－	－	－	1	5	－	
1850	1900	2	${ }^{3}$	－	－	3	3	－	－	－	\bigcirc	－	－	1	－	－	
1900	1950	2	3	－	1	3	3	－	－	－	－	。	－	．	－	．	
1950	2000	2	3	－	4	3	3	。	－	－	。	\bigcirc	．	．	${ }_{6}$	－	
2000	2050	2	3	0	1	3	3	－	－	－	－	－	－	－	${ }^{6}$	－	
2050	2100	2	3	－	1	3	3	－	－	－	－	－	－	1	－	－	
2100	2150	2	3	－	－	3	2	－	－	\bigcirc	－	－	1	1	5	－	
2150	2200	－	3	－	4		2		－	－	。	。	－		－	－	
2200	2250	2	－	－	．	3	2	－	－	－	。	－	．	．	5	－	
2250	2300	2	3	－	．	3	－	－	－	－	。	。	1	．	4	4	－-2
2300	2350	2	2	－	－		1	－	－	－	－	。	－		－	，	
2350	2400	2	1	－	．	3	－	－	－	－	。	－	－	1	2	2	
2400	2450	2	1	－	．	3	－	－	－	－	。	。	1	．	2	2	
2450	2500	－	1	－	．	3	－	－	－	－	－	。		倍	2	2	
2500	2550	－	－	－	－	3	\pm	－	－	－	－	。	－	－	3	3	
2550	2600	2	2	－	1	3	4	－	－	－	－	。	3	。	－	－	
2600	2650	2	${ }^{3}$	－	\cdots	3	2	－	－	－	－	。	－	。	\rightarrow	7	
2650	2700	2	3	\bigcirc	1	3	2	。	。	。	。	－	3	。	7	7	
2700	2750	2	3	－	－	3	2	－	－	－	。	－	3	。	\rightarrow	\rightarrow	
2750	2800	2	3	－	－	3	2	。	－	－	－	－	3	。	7	7	
2800	2850	2	3	－	－	3	2	。	－	－	。	－	3	－	7	7	
2850	2900	－	${ }^{3}$	－	－	3	3	－	－	－	－	－	3	。	－	．	
2900	2950	2	3	－	－	3	3	－	－	－	。	－	3	。	－	－	
2950	3000	2	3	\bigcirc	1	3	3	－	－	－	。	0	3	。	8	－	
3000	3050	2	3	\bigcirc	1	3	3	－	－	－	。	－	3	。	$\stackrel{3}{ }$	－	
3050	3100	2	3	－	－	3	2	－	－	－	。	。	3	－	\rightarrow	\rightarrow	
3100	3150	2	3	－	4	3	2	－	－	－	－	。	－		\rightarrow	\rightarrow	
3150	3200	－ 2	3	－	\therefore	3	2	－	－	－	－	。	3		\rightarrow	\rightarrow	
3200	3250	2	3	－	4	3	\pm	－	－	－	－	－	${ }^{3}$	－	－	－	
3250	3300	2	2	－	－	3	－	－	－	－	。	－	3	－	s	5	
3300	3350	2	4	－	\cdots	3	－	－	－	－	－	－	\cdots		4	，	
3350	3400	2	－	－	－	3	－	－	－	－	－	－	3	－	4	4	
3400	3450	2	－	－	1	3	－	－	－	－	－	－	3	。	4	4	
3450	3500	2	－	－	4	3	－	－	－	－	－	．	\cdots	，	－	4	
3500	3550	2	－	－	\pm	3	－	－	－	－	－	－	3	－	－	4	
3550	3600	2	－	－	\cdots	3	－	－	－	－	。	。	3	－	4	4	
3600	3650	2	－	－	1	3	－	－	－	－	－	－	${ }^{3}$	－	4	4	
3650	3700	-2	\bigcirc	\because	－	3	－		－	－	\bigcirc	\because	3	－	4	4	

3750	3800	2		\bigcirc		3											
3800	3850	2	－	－	．	3	－	－	－	－	－	－	4	1	2	2	
3850	3900	2	。	－	4	\cdots	。	。	。	。	。	－	．	．	2	2	
3900	3950	2	。	－	－	3	－	－	－	－	－	－	1	1	2	2	
3950	4000	2	－	－	4	3	。	－	－	。	。	－	－	－	2	2	
4000	4050	2	。	－	－	3	－	。	－	－	。	－	．	1	2	2	
4050	4100	2	4	－	－	3	－	－	－	－	－	－	．	1	2	2	
4100	4150	－	－	\bigcirc	－	，	\bigcirc	\bigcirc	－	。	－	－	3	。	4	4	
4150	4200	2	4	－	4	\cdots	－	－	－	－	－	－	3	－	4	4	
4200	4250	2	－	－	4	\cdots	－	－	－	－	－	－	．	－	4	4	
4250	4300	2	－	－	．	3	－	－	－	－	－	。	3	－	4	4	
4300	4350	2	4	－	－	3	。	－	－	。	。	－	3	－	$\stackrel{1}{4}$	，	
4350	4400	2	4	－	1	3	．	\bigcirc	－	－	－	－	3	－	4	4	
4400	4450	2	－	－	4	\cdots	。	－	－	－	。	。	3	。	4	4	
4450	4500	2	1	－	4	3	。	－	。	。	－	－	3	－	4	．	
4500	4550	2	－	－	．	－	4	－	－	－	－	。	3	－	s	s	
4550	4600	2	\bigcirc	－	4	－	－	－	－	－	－	－	3	。	4	4	
4600	4650	2	4	－	4	\cdots	。	－	－	－	－	。	，	－	4	4	
4650	4700	2	－	－	．	3	－	－	－	－	。	。	．	－	4	4	
4700	4750	2	－	－	4	3	－	－	－	－	－	－	3	－	4	，	
4750	4800	2	－	－	－	3	。	－	－	－	－	－	3	－	$\stackrel{\square}{4}$	－	
4800	4850	2	1	－	4	3	－	。	\bigcirc	。	－	－	3	－	4	4	
4850	4900	2	－	－	4	3	。	－	。	－	。	。	3	。	4	4	
4900	4950	2	4	－	4	3	－	－	－	－	－	－	3	－	4	4	
4950	5000	2	－	－	4	3	－	－	－	－	－	。	，	－	4	4	
5000	5050	2	4	－	．	3	。	。	－	－	。	。	－	。	4	．	
5050	5100	2	2	。	．	3	－	。	。	。	－	。	．	。	－	－	
5100	5150	2	2	－	．	3	－	。	。	。	。	。	．	。	－	－	
5150	5200	2	2	。	－	3	1	。	。	。	。	。	，	。	－	5	
5200	5250	\therefore	－	－	－	3	－	。	。	。	。	。	S	。	－	s	
5250	5300	2	2	－	－	3	\pm	－	－	。	－	－	3	。	－	－	
5300	5350	2	－	－	4	3	－	。	。	－	。	－	3	－	－	－	
5350	5400	2	－	。	－	3		。	。	。	。	。	3	。	－	${ }_{5}^{3}$	
5400	5450	2	2	。	4	3	4	－	。	。	。	－	3	。	－	s	
5450	5500	2	2	。	．	3	．	。	。	。	。	－	3	。	－	s	cemememe
5500	5550	2	－	。	4	3	4	。	。	。	。	。	，	。	－	5	
5550	5600	2	－	－	4	3	2	－	－	－	－	。	3	－	\rightarrow	\rightarrow	Cumers worezsmin ox
5600	5650	2	3	－	4	\cdots	2	－	－	－	－	－	．	。	\rightarrow	\rightarrow	
5650	5700	2	3	－	4	．	2	－	－	。	－	－	，	－	\rightarrow	\rightarrow	Samese wo
5700	5750	2	－	－	4	3	2	。	。	。	。	。	3	－	\rightarrow	\rightarrow	
5750	5800	2	3	－	4	3	－	－	－	－	－	。	3	。	\rightarrow	\rightarrow	Cunses mozessmman
5800	5850	2	2	－	4	3	2	－	。	。	。	－	3	－	\checkmark	，	
5850	5900	2	－	－	．	3	${ }^{2}$	－	－	－	－	－	S	－	\checkmark	\rightarrow	
5900	5950	－	－	－	4	\cdots	2	－	。	－	－	－	3	－	\rightarrow	\rightarrow	
5950	6000	2	－	－	4	．	－	。	。	－	。	。	3	。	－	－	
6000	6050	2	2	－	4	．	$\stackrel{1}{2}$	－	－	－	－	。	．	。	－	－	
6050	6100	2	4	－	4	3	－	－	－	－	－	－	3	－	S	－	
6100	6150	2	4	－	4	3	。	－	。	。	。	－	，	。	4	4	
6150	6200	2	－	－	．	3	－	－	－	－	－	－	．	－	S	4	
6200	6250	2	4	－	4	3		。	。	－	－	。	3	。	4	．	
6250	6300	2	。	－	4	3	。	－	。	。	。	－	3	－	4	4	
6300	6350	2	4	－	4	3	。	－	。	。	－	－	3	－	．	．	
6350	6400		2	。	4	，		。	－	－	－	－	．	。	．	s	
6400	6450												，	。			Esamementup
6450	6500	2	2	－	－	3	2	。	。	。	－	－	3	。	\rightarrow	，	
6500	6550	2	．	。	4	．	2	。	。	。	。	。	，	。	\rightarrow	，	
6550	6600	2	3	－	4	．	2	。	。	－	。	。	，	。	\rightarrow	，	
6600	6650	2	3	。	4	3	2	。	。	。	。	。	，	。	\rightarrow	\rightarrow	
6650	6700	2	3	－	4	3	2	。	。	。	\bigcirc	。	，	。	\rightarrow	，	
6700	6750	2	3	－	4	3	2	。	。	。	。	。	3	－	\rightarrow	，	
6750	6800	2	3	－	4	3	2	－	。	－	。	－	3	。	7	，	
6800	6850	2	3	－	－	3	3	。	－	。	－	－	3	。	－	．	
6850	6900	2	3	－	－	3	3	－	。	。	。	。	3	。	．	．	
6900	6950		3		－	3	3	。	。	。	。	。	3	。	s	．	
6950	7000	－	3	－	－	3	3	－	－	－	。	。	3	－	－	．	
7000	7050	2	3	\bigcirc	－	3	3	。	－	。	－	－	3	。	－	．	
7050	7100	2	3	－	4	3	2	。	。	。	。	。	3	。	\rightarrow	\rightarrow	
7100	7150		3		4			－					3	。	\rightarrow	\rightarrow	
7150	7200	2	3	。	－	3	－	。	。	。	－	。	3	。	，	\rightarrow	
7200	7250	2	－	－	1	－	2	－	。	。	－	，	3	。	\rightarrow	\rightarrow	
7250	7300	2	－	－	－	3	－	。	。	。	。	－	3	。	－	s	
7300	7350	2	2	－	4	3		－		－		－	，	－	s	5	
7350	7400	，	－	－	4	\cdots	－	－	－	－	－	－	，	。	4	4	
7700	7750	$:$	4	\bigcirc	4	\cdots	．	－	－	。	－	－	3	－	5	s	
7450	7500	2	．	－	4	．	$+$	。	－	－	。	。	．	．	－	－	
7500	7550	\sim	3	－	4	\cdots	2	－	－	－	－	－	3	－	\rightarrow	，	
	7600	2	3	\div		3	$\stackrel{2}{2}$		－	－	－	－	，	：	\cdots	．	Seneme
7650	7700	$=$	3	\bigcirc	－	3	2	\bigcirc	\bigcirc	\div	\bigcirc	\because	3	\bigcirc	\rightarrow	\rightarrow	
7700	7750	2	3	－	4	3	3	－	－	－	。	－	．	－	－	．	
7750	7800		3	－	－	3	3	－	－	－		。	．	－	－	．	Samese wosessmmax
7800	7850	2	3	－	4	\cdots	3	－	－	－	－	－	，	－	－	－	Cutreswosis smmax
7850	7900	－	3	－	．	3	3	－	－	－	－	－	3	－	．	．	Suncesw wos ssmmax
7900	7950	2	3	－	4	3	3	－	－	－	－	－	3	。	－	．	
7950	8000	\because	3	\bigcirc	4	3	3	－	－	\bigcirc	－	－	3	\bigcirc	S	．	caters wornssmin max
8800	8050	2	3	\bigcirc	4	\cdots	${ }^{3}$	－	－	－	－	－	3	。	－	．	
$\begin{array}{\|l\|} \hline 8050 \\ \hline 8100 \\ \hline \end{array}$	8100	2	3	－	－	．	．	－	－	－	－	－	3	－	．	．	
$\frac{8100}{8150}$	8180	2	3		4	3		－		－		。	3	。	\％	．	
8200	8250	$:$	3	－	－	3	2	－	－	－	。	。	3	－	\rightarrow	\rightarrow	
8250	8300	2	3	\bigcirc	4	\cdots	2	－	－	－	－	－	3	－	\rightarrow	，	canse minem
8300	8350	2	2	－	－	3	${ }^{-}$	。	。	。	。	。	－	。	－	－	
8350	8400	2	－	－	4	3	－	。	。	。	。	。	3	。	－	5	
$\begin{array}{\|l\|} \hline 8400 \\ \hline 8450 \\ \hline \end{array}$	8450 8500	2	\square	\because	1	3	\bigcirc	\because	\because	\bigcirc	\div	\because	3	\bigcirc	\because	\because	
8850	8550			\div	\therefore	3	\div	\div	－	\div	\bigcirc	\div	3	－	4	4	
8550	8600	2	－	－	．	3	1	－	。	－	。	。	－		4	4	
8600	8650 8700	$=$	3	－	4	\cdots	$=$	。	。	－	－	－	－	－	s	－	
8650	8700	2	S	－	－	．	－	－	－	－	。	。	\pm	1	－	－	
8700	8750	2	3	－	－	3	2	。	。	－	。	。	．	．	5	－	
8750	8800	\sim	3	－	4	－	3	。	。	－	。	。	．	－	－	－	
8800	8850	2	3	－	4	．	－	。	。	－	。	。	1	1	－	－	
8850	8900	2	3	－	4	\cdots	3	－	－	－	。	。	．	－	－	－	
8900	8950	2	3	－	－	3	3	－	－	－	－	。	1	．	－	－	
8950	9000	2	3	。	4	3	3	－	。	。	。	－	－	4	－	－	
9000	9050	2	3	－	4	3	${ }^{3}$	。	。	。	。	。	．	4	－	－	
9950	9100	2	3	－	4	3	3	－	－	－	。	－		4	－	－	
9100	9150	2	3	－	4	3	2	－	。	。	。	。	3	。	\rightarrow		
9150	9200	$\stackrel{2}{2}$	3	\bigcirc	\therefore	3	2	\bigcirc	－	－	\bigcirc	\bigcirc	3	。	\cdots	\cdots	
9250	9300												3	－	－		

9300	9350		-1	－	－	．		－		－		－	3	。	s		
9350	9400	2	－	。	－	3	2	－	。	。	。	－	3	。	\rightarrow	，	
9400	9450	2	3	－	－	3	2	－	－	－	－	－	3	。	，	，	
9450	9500	2	3	。	－	3	2	－	－	－	。	－	3	。	7	－	
9500	9550	2	3	\bigcirc	．	3	2	－	－	－	－	－	3	。	\rightarrow	，	
9550	9600	2	3	－	4	3	2	－	－	－	－	\because	3	。	\rightarrow	，	canese mom Samiminat
9600	9650	2	3	．	4	\cdots	2	－	－	－	－	－	3	。	\rightarrow	，	
9650	9700	2	3	。	－	3	2	－	－	。	。	－	3	。	\rightarrow	，	Cumese mom Sasmiminex
9700	9750	2	3	。	－	3	$=$	－	－	－	。	－	3	。	\rightarrow	－	Catese mom saminmax
9750	9800	2	3	\bigcirc	1	3	3	－	－	－	－	－	\cdots	。	－	S	
9800	9850	2	3	。	－	3	2	－	－	－	－	－	3	。	\rightarrow	7	Cuncos semin oox
9850	9900	2	3	。	．	3	${ }^{3}$	－	。	－	－	－	3	。	－	－	Cutrsacomin max
9900	9950	2	3	－	4	3	2	－	－	。	。	－	3	。	\rightarrow	，	
9950	10000	2	3	。	－	3	2	－	－	－	－	－	3	－	\rightarrow	\rightarrow	
10000	10050	2	3	。	－	3	2	－	－	－	。	－	3	。	\checkmark	\rightarrow	
10050	10100	2	3	。	4	3	2	\bigcirc	－	\bigcirc	－	－	3	。	7	，	Cutrse
10100	10150	2	－	。	－	3	2	－	。	。	。	－	3	。	\rightarrow	，	
10150	10200	2	3	－	－	\cdots	4	－	。	。	。	。	3	。	－	S	
10200	10250	2	－	。	4	3	－	－	。	。	。	。	3	。	－	－	
10250	10300	2	2	。	－	3	－	－	－	－	。	－	3	。	－	s	
10300	10350	2	${ }^{-}$	－	－	3	－	\bigcirc	－	－	－	－	3	－	$\stackrel{4}{4}$	4	
10350	10400	－	4	。	－	3	－	－	－	－	。	－	3	－	4	－	
10400	10450	2	4	。	－	3	。	－	。	。	。	。	3	。	\checkmark	－	
10450	10500	2	，	。	4	3	．	－	－	－	。	－	3	。	4	－	
10500	10550	2	\bigcirc	。	4	3	－	－	－	－	－	－	3	－	4	4	
10550	10600	2	。	。	－	3	－	－	－	－	－	－	．	．	2	2	
10600	10650	2	4	。	－	3	－	－	－	－	。	－	．	1	2	2	
10650	10700			－	－	3	－	－	－	－	－	－	－		2	－	
10700	10750	2	．	。	4	3	－	－	－	－	。	－	－	1	2	2	
10750	10800	2	${ }^{-}$	。	－	3	－	－	－	－	－	－	－	－	2	2	
10800	10850	－	${ }^{-}$	。	${ }^{-}$	3	。	－	－	－	。	－	$\stackrel{1}{ }$	－	2	2	
10850	10900	2	4	－	4	3	。	－	－	－	。	－	4	－	2	2	
10900	10950	2	${ }^{-}$	－	\cdots	3	－	－	－	－	－	－	$\stackrel{-}{-}$	4	2	2	
10950	11000	2	－	。	－	3	－	－	－	－	。	－	－	1	2	2	
11000	11050	2	4	。	－	3	。	－	－	－	。	－	$\stackrel{1}{ }$	1	2	2	
11050	11100	$\stackrel{2}{2}$	${ }^{-1}$	\bigcirc	4	3	\bigcirc	\bigcirc	－	\because	\bigcirc	\bigcirc	3	－	4	，	
11100	11150	，	${ }^{-}$	－	－	3	－	\bigcirc	－	－	－	－	3	。	4	4	
11150	11200	2	4	。	－	3	－	－	－	－	。	－	3	。	4	，	
11200	11250	2	4	－	．	3	－	－	－	－	－	－	\cdots	－	4	4	
11250	11300	2	1	－	$\stackrel{-}{4}$	\cdots	－	－	－	－	－	－	\cdots	－	4	4	
11300	11350	－	4	。	\cdots	3	。		－	－	。	－	\cdots	。	4	4	
11350	11400	2	4	。	－	3	。	－	。	。	。	－	3	。	4	4	
11400	11450			。	－	3	－	－	－	．	－	－	3	。	－		
11450	11500	2	2	－	－	3	2	\bigcirc	－	－	－	\because	3	－	\rightarrow	\cdots	
11500	11550	2		－	－	3	2	\bigcirc	－	－	。	\because	3	。	\cdots	\rightarrow	
11550	11600	2	－	－	1	－	2	－	－	－	。	－	3	。	\rightarrow	\cdots	
11600	11650	2	3	。	－	3	2	－	。	。	。	。	3	。	\rightarrow	\rightarrow	
11650	11700	2	3	。		3	2			－		－	3	。	\rightarrow	，	
11700	11750	2	3	－	－	\cdots	${ }^{-}$	\bigcirc	－	－	－	\because	3	。	－	．	
11750	11800	2	3	－	－	3	3	－	－	－	。	－	3	。	－	，	
11800	11850	2	3	－	－	3	3	。	。	。	。	。	．	。	．	－	
11850	11900	2	3	－	－	3	3	－	－	－	。	－	3	。	－	－	
11900	11950	2	3	。	－	3	3	\bigcirc	－	－	。	－	3	。	－	－	
11950	12000	2	${ }^{-}$	－	－	3	3	－	－	－	。	－	3	。	－	．	
12000	12050	2	3	。	－	3	3	－	－	－	。	－	3	。	－	．	
12050	12100	2	${ }^{3}$	－	4	3	\cdots	－	－	－	－	－	3	。	－	．	
12100	12150	2	3	－	－	3	3	－	－	－	。	－	3	。	－	．	
12150	12200	2	3	－	．	3	3	－	－	－	。	－	3	。	．	－	
12200	12250	2		－	．	3	2	－	－	－	－	－	3	。	．	，	
12250	12300	2	－	－	4	3	2			－	－	－	3	。	\rightarrow	\rightarrow	
12300	12350	2	3	－	－	3	2	－	－	－	。	－	3	。	\rightarrow	\rightarrow	
12350	12400	2	3	。	－	3	2			－		－	\pm	1	s	．	
12400	12450											－	，	，	s	．	
12450	12500														3	－	
		2	－	－	－	3	：			－	。	－	\pm	1	s	．	
$\frac{12500}{12550}$	12550	－	2	－	．	－	\pm					－	\cdots	1	4	－	
112600		2	－	\div	$\stackrel{1}{4}$		\because					\div	$\stackrel{1}{ }$	1	4	：	
12650	12700	－	－	。	\cdots	3	－				。	－	－	1	2	2	
12700	12750	－	${ }^{-}$	－	－	3	－	－	－	－	。	－	\cdots		2	2	
12750	12800	2	－	－	4	3	－			－	－	－	${ }^{3}$	－	4	$\stackrel{ }{ }$	
12800	12850	，		。		${ }^{3}$	－	－	－	－	－	－	\cdots	－	4	4	
12850	12900	－	4	－	\cdots	3	－	－		－	。	－	3	－	4	．	
$\frac{12900}{12950}$	12950	，	4	－	4	${ }^{3}$	－	－	－	－	－	－	${ }^{3}$	，	4	$\stackrel{ }{ }$	
12950	13000	2	${ }^{-1}$	－	－	\cdots	－					－	3	－	4	4	
13050		2		\div			\div			\div		－	3	－	4	4	
13100	13150	2	1	。	－	\cdots	。	\bigcirc		－	。	－	3	－	4	，	
13150	13200	2	。	－	4	3	－	－	－	－	－	－	\cdots	－	4	4	
13200	13250	2	－	－	4	3	－	－		－	－	－	${ }^{3}$	－	4	－	
13250	13330	2	－	－	4	3	－	－	－	－	－	－	3		s	5	
13300	13350	2	4	－	．	，	4	－	－	－	－	－	$\stackrel{3}{ }$	－	s	s	
		$\stackrel{2}{2}$	1	－			－			－		－	3	－	4	$\stackrel{\square}{4}$	
13450	13500	－	${ }^{-}$	\bigcirc	4	3	－	\bigcirc		\bigcirc	－	\div	3	－	$\stackrel{4}{4}$	4	
13500	13550	2	$\stackrel{1}{4}$	－	4	\cdots	－	\bigcirc	－	－	－	－	\cdots	，	4	4	
13550	13600	－	。	－	4	\cdots	．					－	\cdots	－	s	${ }_{s}$	
13600	13650	－	。	－	－	3	－	－	－	－	－	－	3	－	s	S	
13650	${ }_{13700}^{13750}$	\cdots	－	－	4	3	－	\div		－		－	3	－	4	$\stackrel{\square}{4}$	
13750	13800	2	。	。	－	3	．	\cdots	－	－	。	－	3	。	$\stackrel{4}{4}$	4	
13800	13850	2	－	－	4	3	－	－	－	\bigcirc	－	\bigcirc	\cdots	－	4	4	
13850	13900	2	0	－			－					0	\cdots	－	4	$\stackrel{1}{4}$	
13900	$\begin{aligned} & 13950 \\ & \hline 14000 \end{aligned}$	2	－	－	$\begin{array}{\|l\|} \hline-1 \\ \hline-1 \end{array}$	$\frac{3}{3}$	$\stackrel{0}{\circ}$		\div	\div	$\stackrel{\circ}{\circ}$	$\frac{0}{0}$	3	－		\because	
14000	14050	－	－	\bigcirc	－	3	\bigcirc	\cdots			\bigcirc	\bigcirc	3	－	4	－	
14050	14100	2	${ }^{-}$	－	4	3	－	－	－	－	－	－	\cdots	．	2	2	
14100	14150	－	－	－	4	3	－	－	－	－	－	－	\cdots	1	2	2	
14150	14200	$\stackrel{2}{2}$	\bigcirc	－	$\stackrel{1}{4}$	3	\bigcirc	\because－	\bigcirc	\div	\bigcirc	\because	$\stackrel{1}{+}$	1	2	2	
$\frac{14200}{12250}$		$\stackrel{2}{2}$	\bigcirc	－	$\stackrel{1}{4}$	3	\div	\div	－	\div	－	－	$\stackrel{1}{4}$	1	$\stackrel{2}{2}$	$\stackrel{2}{2}$	
14300	14350	－	。	。	－	3	－	－	－	\bigcirc	－	－	－	．	2	2	
14350	14400	2	－	－	－	3	－	－	－	－	。	－	－	－	2	2	
$\frac{14400}{14450}$	14450	2	。	－	4	3	0	0		－	－	0	\cdots	1	2	2	
$\frac{14450}{14500}$	14550	2	\bigcirc	$\stackrel{\circ}{\circ}$	4	${ }^{3}$	－	\because	\div	－	－	$\frac{0}{0}$	－	1	2	2	
14550	14600	2	。	－	$\stackrel{-}{4}$	3	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\because	$\stackrel{1}{ }$	1	2	2	
14600	14650	2	．	－	$\stackrel{1}{4}$	3	－	－	－	－	－	－	$\stackrel{1}{ }$	－	2	2	
$\frac{14650}{14700}$	14700	－	4	－	4	\cdots	－	－	－	－	－	－	．	4	2	2	
14700	14750	$\stackrel{2}{2}$	－	－	4	3						－	1	．	$\stackrel{2}{2}$	$\stackrel{2}{2}$	
14800												\div	1	1	2	2	
14850	14900																

20100	20150	－	－2	。	－	3	1	－	－	。	。	0	${ }^{3}$	。	－	－5	
20150	20200	2	2	。	－	${ }^{3}$	1	。	。	。	。	。	3	。	－	${ }_{5}$	
20200	20250	－2	－	－	－	3	－	－	－	－	－	－	3	。	4	4	
20250	20300	－2	1	。	－	3	。	。	。	－	。	－	－	。	4	4	
20300	20350	2	1	。	1	3	。	。	－	－	－	－	${ }^{-3}$	。	4	4	
20350	20400	－	－ 1	。	－	3	－	－	－	\bigcirc	\bigcirc	－	－ 3	。	4	4	
20400	20450	2	。	－	．	3	－	－	－	\bigcirc	－	0	3	。	4	4	
20450	20500	2	。	。	1	3	－	。	－	\bigcirc	－	0	－ 3	。	4	4	
20500	20550	2	－	。	－	${ }^{3}$	－	。	－	。	\bigcirc	－	${ }^{3}$	。	4	4	
20550	20600	－ 2	－ 1	。	． 1	${ }^{3}$	－	－	－	－	－	－	－	2	－ 3	3	
20600	20650	${ }^{-2}$	－	－	－	${ }^{3}$	－	。	－	\bigcirc	－	－	－	－	${ }^{-3}$	${ }^{3}$	
20650	20700	－2	－ 1	－	－	${ }^{3}$	－	－	－	－	－	－	－	－	3	3	
20700	20750	.2	－	－	－	${ }^{3}$	－	－	－	－	\bigcirc	－	－	－	3	－ 3	
20750	20800	2	－	。	．	3	1	－	。	－	。	－	．	2	4	4	
20800	20850	2	1	－	－	${ }^{3}$	－	－	－	－	。	－	－	2	${ }^{-3}$	${ }^{-3}$	
20850	20900	2	1	－	－	${ }^{-3}$	－	－	－	－	－	－	－	2	${ }^{3}$	3	
20900	20950	-2	－	。	－	${ }^{3}$	－	－	。	。	－	－	－	2	${ }^{-3}$	${ }^{3}$	
20950	21000	2	－ 1	－	－	${ }^{3}$	－	－	－	－	－	。	－	2	3	${ }^{-3}$	
21000	21050	2	－	－	－	${ }^{3}$	－	－	。	。	－	－	－	2	${ }^{3}$	${ }^{3}$	
21050	21100	2	。	。	－	3	－	。	。	－	。	。	3	。	4	4	
21100	21150	2	－ 1	。	－	3	－	。	。	。	。	。	－	。	4	4	
21150	21200	2	－	。	－	${ }^{3}$	－	－	。	\bigcirc	。	。	3	。	4	4	
21200	21250	2	。	。	－	${ }^{3}$	。	。	。	\bigcirc	。	。	3	。	4	4	
21250	21300	2	。	。	． 1	3	。	。	－	\bigcirc	\bigcirc	。	3	。	4	4	
21300	21350	2	－	。	－	${ }^{3}$	－	。	－	－	－	。	－ 3	。	4	4	
21350	21400	－2	－	－	－	${ }^{3}$	－	－	－	－	－	－	3	。	4	4	
21400	21450	－2	－	。	－	3	－	－	－	。	。	。	－	。	4	4	
21450	21500	－ 2	1	。	．	3	。	。	。	－	。	。	． 3	。	4	4	
21500	21550	－ 2	2	－	${ }_{-}$	3	-1	－	－	\bigcirc	－	－	3	－	－	－	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a result of -3 access．Reduced to minor
21550	21600	2	2	－	－	3	－	。	－	－	－	\bigcirc	${ }^{3}$	。	－	． 5	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a result of -3 access．Reduced to minor
21600	21650	－ 2	2	－	－	3	－	－	－	\bigcirc	－	\bigcirc	${ }^{3}$	。	－	． 5	
21650	21700	－2	$-$	\bigcirc	－	3	$\stackrel{-1}{ }$	－	。	－	－	\bigcirc	3	－	－	． 5	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a fesult of -3 access．Reduced to minor
21700	21750	2	－	\bigcirc	4	3	－	－	－	\bigcirc	－	0	${ }^{3}$	。	－	． 5	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a result of -3 access．Reduced to minor
21750	21800	－2	2	。	－	－ 3	－	－	。	－	－	0	－	。	．	． 5	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a result of -3 access．Reduced to minor
21800	21850	2	－	－	－	3	-1	0	。	－	－	－	－ 1	－2	－	． 5	
21850	21900	-2	－	。	－	3	－	－	－	\bigcirc	\bigcirc	0	．	2	－	．	
21900	21950	2	2	。	${ }_{-1}$	${ }^{3}$	$\stackrel{1}{ }$	0	－	。	－	－	－	2	5	5	
21950	22000	2	－	－	－	3	－	。	。	－	－	。	－	2	．	－5	
22000	22050	2	－	－	－	${ }^{3}$	-1	－	－	。	－	－	－	2	s	－	
22050	22100	－2	－	\bigcirc	－	3	－	－	。	。	。	0	－3	。	－	． 5	
22100	22150	－	－	－	－	3	－	－	。	。	－	。	－3	。	－	． 5	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a result of -3
22150	22200	－ 2	－	－	－	3	${ }^{-1}$	。	－	－	－	。	3	。	－	5	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a result of -3 access．Reduced to minor
22200	22250	2	－	。	${ }_{-1}$	3	－	－	。	。	。	\bigcirc	${ }^{3}$	0	－	． 5	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a result of－3 access．Reduced to minor
22250	22300	2	2	。	${ }_{-1}$	3	${ }_{-1}$	。	。	。	。	。	${ }^{3}$	。	－	s	Embankments up to 18.7 m on non identifiable geo constraint．Score skewed as a result of -3 access．Reduced to minor
22300	22350	－ 2	2	。	－	${ }^{3}$	2	－	－	。	－	。	3	。	7	－7	
22350	22400	2	2	。	${ }_{-1}$	${ }^{3}$	2	。	－	。	。	。	${ }^{3}$	。	\rightarrow	\rightarrow	
22400	22450	－ 2	－	\bigcirc	－	－	2	－	－	－	－	0	${ }^{3}$	。	\rightarrow	7	
22450	22500	2	－	\bigcirc	－	3	\pm	－	。	－	。	\bigcirc	－ 3	。	－	－ 5	Embankments up to 18.6 m on non－identifiable geo constraint．Minor geo impact．Score skewed by -3 access．Reduced to minor
22500	22550	－	－	－	－	－	${ }^{-1}$	－	。	－	－	－	${ }^{3}$	。	．	－5	Embankments up to 18.6 m on non－identifiable geo constraint．Minor geo impact．Score skewe by -3 access．Reduced to minor
22550	22600	2	－	\bigcirc	－ 1	3	－	－	－	\bigcirc	－	0	${ }^{3}$	。	－	． 5	Embankments up to 18.6 m on non－identifiable geo constraint．Minor geo impact．Score skewed by－ 3 access．Reduced to minor
22600	22650	－	－	－	－	3	${ }_{-}$	－	。	－	－	0	． 3	。	－	． 5	Embankments up to 18.6 m on non－identifiable geo constraint．Minor geo impact．Score skewed by -3 access．Reduced to min
22650	22700	-2	2	。	$\stackrel{-}{1}$	3	－	－	。	－	。	－	－ 3	。	－	－	
22700	22750	\because	－	－	－	3	－	－	－	\bigcirc	－	－	3	。	4	4	
22750	22800	2	，	。	－	3	－	－	－	。	－	。	${ }^{-3}$	。	4	4	
22800	22850	－ 2	\bigcirc	。	${ }_{-1}$	3	0	－	。	－	－	0	－	。	4	4	
22850	22900	－	．	。	－	${ }^{-3}$	2	。	－	－	\bigcirc	0	3	。	－	－	Cuting 6 m troust poememisly
22900	22950	2	－	\bigcirc	－	3	0	\bigcirc	。	－	－	0	${ }^{3}$	－	4	4	，
22950	23000	2	1	－	．	${ }^{3}$	－	－	－	－	－	。	${ }^{3}$	。	4	4	
23000	23050	－2	－	－	－	3	－	－	。	－	。	。	－	－	4	4	
23050	23100	－2	－	－	－	${ }^{3}$	－	－	。	。	－	。	－	。	4	4	
23100	23150		．	。	－ 1	3	\bigcirc	－	。	－	。	。	－	。	4	4	
23150	23200	2	－	。	． 1	3	0	。	。	－	－	。	－3	。	4	4	
23200	23250	，	。	－	－	－	－	。	。	－	。	0	3	\bigcirc	4	4	
23250	23300	2	－	\bigcirc	． 1	3	\bigcirc	\bigcirc	－	－	。	0	3	－	4	4	
23300	23350																
23350	23400																

+ Structures Score + Flooding Score (Average of L, M and
N) +Utilities score + Constructability Score (Minimum value
Then if total < or equal to -9 then should be coloured red because this represents possibility of 3 reds or 4 ambers
If total is between -6 and -8 should be coloured amber If total is between -6 and -8 should be coloured amb
since this could represent 2 recd
If total is between -3 and -5 sho

750	800		3			3	\therefore	－	－	－	－	－	3	。	7	，	\qquad
800	850		．	2－	－	3	2	。	。	。	。	。	，	。	，	．	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased． High pressure pas main crosses alised dowwards． Embankments $>19 \mathrm{~m}$ on unidentified materi Level difference due to slopes of existing topography．
850	900	－2	3	2	－	3	2	。	。	。	。	。	3	。	，	，	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased． High pressure gas score could be revised downwards． Embankments $>19 \mathrm{~m}$ on unidentified materia Level difference due to slopes of existing topography．
900	950		2	2	－	．	．	。	。	。	。	。	3	。	．	．	Alignment length scaring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased Embanssure gas main crosses alignment． Level difference due to slopes of existing topography．
950	1000		2	2	．	．	－	。	。	。	。	2		。	－	－	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased Construction access score could be revised downwards． High pressure gas main crosses alignment． Level difference due to slopes of existing topography．
1000	1050	2	2	2	．	．	－	．	－	。	－	－	3	。	\because	．	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increase Construction access sco Emhankments $>19 \mathrm{~m}$ on unidentified materal． Level difference due to slopes of existing topography．
1050	1100	2	4	2	4	3	－	－	－	－	－	－	3	－	5	－	
1100	$\begin{array}{\|l\|} \hline 1150 \\ \hline 1200 \\ \hline \end{array}$	2	1	${ }_{2}$	$\stackrel{1}{4}$	${ }^{3}$	\because	－	－	－	－	\div	3	：	$\stackrel{5}{5}$	s	
1200	1250	2	－	2	－	3	－	－	－	－	－	\bigcirc	3	。	${ }^{5}$	s	
1250	1300	2	－	2	\cdots	3	－	－	－	－	－	－	3		5	．	
1300	1350	2	－	2	\pm	3	－	－	－	－	－	－	3	。	5	S	
1350	1400	$=$	－	2	－	3	－	－	－	－	－	－	3	－	s	s	
1400	1450	：	－	2	－	3	－	\bigcirc	－	－	－	－	3	。	5	－	
${ }^{1450}$	${ }^{1500}$	2	1	2	－	3	－	－	－	－	－	－	3	－	－	s	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
1500	1550	2	1	2	．	3	．	－	。	。	．	．	3	。	－	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased Construction access score could be revised downwards．
1550	${ }_{1600}^{1650}$	2	．	2	－	－	．	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	3	。	－	－	Aligment lenght soring seewed by one short alignenen out of 4. Bendiness dictated by high impact areas－ 1020 m curves could be increased Construction acess
1600	1650	${ }_{-}$	1	2	－	${ }^{3}$	\div	\div	\div	\div	\div	\div	3	－	$\stackrel{5}{5}$	$\stackrel{5}{5}$	
1700	1750	\sim	1	2	\pm	3	－	－	\bigcirc	－	\bigcirc	－	3	。	\checkmark	－	
1750	1800	2	1	2	\pm	3	－	－	－	－	－	－	3	－	5	S	
1800	1850	，	1	－	－	${ }^{3}$	\bigcirc	－	－	－	－	。	3	－	－	－	
1850	1900	－	1	2	4	${ }^{3}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	3	－	－	－	
1900	1950	： 2	1	$\stackrel{2}{2}$	－	${ }^{3}$	\％	\div	\div	\because	\div	\because	${ }^{3}$	－	－	${ }^{5}$	
2000	2050	2	1	2	－	3	－		－	。	－	－	3	。	－	－	
2050	2100	2	4	2	\pm	3	－	－	－	－	\bigcirc	－	3	。	－	s	
${ }^{2100}$	${ }^{2150}$	2	．	2	－	3	－	。	。	。	。	。	3	。	－	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards．
${ }^{2150}$	${ }^{2200}$		．	．	－	3	．	。	。	。	。	。	．	。	－	s	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
${ }^{2200}$	${ }^{2250}$		．	2	－	3	．	。	。	。	。	－		。	－	s	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
2300	2350	2	－	2	1	3	1	－	－	－	－	－	3	－	－	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
${ }^{2300}$	2400		－	2	－	3	－	。	。	－	－	－	3	。	－	5	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
2350	2400	2	．	2	－	，	4	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	3	－	－	s	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased Construction access score could be revised downwards．
2400	2450	2	4	2	\pm	3	－	－	－	－	\bigcirc	\bigcirc	3	－	－	s	
2450	2500	$\stackrel{2}{2}$	1	$\stackrel{2}{2}$	$\stackrel{-1}{4}$	${ }^{-3}$	\div	－	－	－	\div	－	3	－	$\stackrel{5}{5}$	$\stackrel{5}{5}$	
2550	2600	－	1	2	－	${ }^{3}$	\bigcirc	\div	\div	\div	\div	\div	3	\bigcirc	${ }_{-}$	－	
2600	2650	2	－	2	－	3	。	－	。	。	－	－	3	。	－	5	
2650	2700	2	－	2	－	${ }^{3}$	。	－	－	－	－	－	3	。	－	．	
2700	2750	2	1	2	－	3	－	－	－	－	－	－	3	。	5	－	
${ }^{22750}$	${ }^{2800}$	2	．	2	－	3	－	。	。	。	。	。	．	。	－	．	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be incres Construction access scon could be revised downwards．
2800	2850					3		．	．	．		．	3	。	\therefore		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
$\frac{2850}{2900}$	2900	2	1	2	1	3	\bigcirc	－	\div	\div	\bigcirc	\bigcirc	，	\bigcirc	－	5	
2900	2950	2	1	${ }_{-2}$	－	${ }^{-3}$	－	：	－	：	：	\because	${ }^{3}$	－	－ 5	$\stackrel{5}{5}$	
3000	3050	2	－	2	4	3	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	3	－	$\stackrel{5}{5}$	－	
3050	3100	2	－	2	4	3	－	－	－	－	－	－	3	－	－	${ }^{5}$	
3100	3150	2	1	2	4	3	－	－	－	－	－	－	3	－	－	S	
33150	3200	2	4	2	1	${ }^{3}$	\div	\div	\bigcirc	\div	\div	－	3	－	－	－s	
3250		2	1	2	－	${ }^{3}$	\div	\bigcirc	\bigcirc	\div	\div	\div	3	－	${ }_{5}$	${ }^{-5}$	
3300	3350	2	1	2	－	3	－	－	－	－	－	－	3	。	S	s	
3350	3400	2	－	2	－	${ }^{3}$	－	－	－	－	－	－	3	。	S	s	
3400	3450	2	1	$=$	\pm	3	。	－	－	－	－	－	3	－	5	${ }^{5}$	
${ }^{3450}$	${ }^{3500}$	2	2	，	－	－	．	。	。	。	。	。	3	。	．	．	Aligment length soring seewe by y one shot tilignnent out of 4. Rock cuttings $>19 \mathrm{~m}$ Level difference due to slopes of existing topography．
33500	${ }^{3550}$	2	2	2	－	3	．	。	。	。	。	。	3	。	．		Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
${ }^{3550}$	${ }^{3600}$		2	2	－	．		。	。	。	。	。	3	－	，		Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased Rock cuttings $>19 \mathrm{~m}$ ． Level difference due to slopes of existing topography．
																	 Rock cuttings $>19 \mathrm{~m}$ Level difference her ciflerence due to slopes of existing topography．
3650	3700																Alignment length scoring skewed by one short alignment out of 4 ess dictated by high impact areas－ 1020 m curves could be increased Construction access sc Level difference due to slopes of existing topography．

5500	15550		3	2	\pm	3	－	－	－	－	－	－	3	。	．		and benceresed Emmenments Level aifference due to slopes of existing topography．
5550	5600	2	2	2	\pm	3	。	－	\bigcirc	－	－	－	3	。	－	s	
5600	5650	2	4	2	1	3	－	－	－	－	－	－	3	－	－	s	
5650	5700	2		2	\therefore	3	－	－	－	－	－	－	3	。	5	s	
5700	5750	2		2	－	3	－	－	－	－	。	。	．	。	－		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
5750	5800	2	2	2	－	3	1	。	。	。	．	。	．	。	．	5	
5800	5850	－	2	2	－	3	1	．	－	－	．	。	．	。	．	5	Aligment length soring seewe by y one short alignnent out of 4 Level difference due to tospepses of exsiting topogspopy．
5850	5900	$-$	2	2	－	3	\pm	－	－	－	．	．	3	。	－	－	t alignment out of 4 ． Bendiness dictated by figh impatt aess－1020 m curves could be increased． Level difference due to slopes of existing topography．
5900	5950	2	2	，	，	3	．	－	－	－	。	－	3	。	－	，	alignenen out of 4 ． Eevel difference due to tospese of exsistrg topograppy．
5950	6000	2	－	2	－	3	－	－	－	－	－	－	3	－	－	s	
6000	6050	2	1	2	\pm	3	\bigcirc	－	－	\bigcirc	－	－	，	－	－	$\stackrel{s}{5}$	
6100	6150	－2	$\stackrel{1}{4}$	2	－	3	\div	\div	\div	\div	\div	－	3	\bigcirc	－	\cdots	
6150	6200	，	1	－	－	3	\bigcirc	－	\bigcirc	\bigcirc	\because	\bigcirc	3	\bigcirc	5	S	
6_{6200}^{6250}	${ }_{6300}^{6250}$	2	－	2	－	3	－	。	。	。	。	。	3	。	－	－	
6250	6300	2	2	2	$-$	3	－	－	。	。	。	－	3	－	．	－	
6300	6350	2－	2	2	－	3	2	。	。	。	。	。	3	。	，	－	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
6350	6400	－	3	2	－	3	2	－	－	－	\bigcirc	。	3	。	－	，	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
6400	6450	－	－3	2	－	3	．	。	\bigcirc	－	－	－	3	。	\cdot		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
6450	6500	2	3	2	－	． 3	2	。	。	。	。	。	3	。	，		Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
6500	6550	2－2	3	2	－	3	2	。	。	。	。	。	，	。	，		ane length scoring skewed by one short alignment out af Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Embankments $>19 \mathrm{~m} \&>39 \mathrm{~m}$ on unidentified material $\&$ rock Level difference due to slopes of existing topography．
${ }^{6550}$	${ }^{6600}$	2	3	2	－	3	2	。	。	。	。	。	，	。	，	，	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
${ }^{6600}$	${ }^{6650}$	2	3	2	－	3	2	。	。	。	。	。	3	。	，		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
${ }^{6650}$	${ }^{6700}$		．	2	－	．	2	。	。	。	。	。	，	。	，		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Embankments $>19 \mathrm{~m} \&>39 \mathrm{~m}$ on unidentified material $\&$ rock Level difference due to slopes of existing topography．
6700	6750	－	3	2	\pm	3	3	－	－	－	－	。	3	。	－	\checkmark	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased Embankments $>19 \mathrm{~m} \&>39 \mathrm{~m}$ on unidentified material $\&$ rock． Level difference due to slopes of existing topography．
${ }^{6750}$	${ }^{6800}$	2	．	2	\pm	3	3	。	。	。	－	。	．	。	－	－	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Embankments $>19 \mathrm{~m} \&>39 \mathrm{~m}$ on unidentified material $\&$ rock． Level difference due to slopes of existing topography．
6800	6850	－	3	2	－	3	3	。	。	。	。	。	3	。	${ }^{3}$	－	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
6850	6900	－2	3	2	－	－3	－3	－	。	。	－	。	3	。	－	－	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
6900	6950	－	3	2	－	3	．	－	－	－	\bigcirc	－	3	。	－	－	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Embankments $>19 \mathrm{~m} \&>39 \mathrm{~m}$ on Lunidentified material \＆rock Level difference due to slopes of existing topography．
${ }^{6950}$	7000	2	3	2	－	3	．	．	－	．	。	。	3	。	－	－	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
7^{7000}	${ }^{7050}$					．	3	。		。	．	。	3	。	－		Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Embankments $>19 \mathrm{~m}$ \＆$>39 \mathrm{~m}$ on unidentified material $\&$ rock Level difference due to slopes of existing topography．
7050	7100					3	3	\bigcirc		－		。	3	。	－		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
7100	7150																Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．

15050	15100							－	。	－	－	－		。	7		Alignment length scoring skewed by one short alignment out of 4. Bendiness dictated by high impater areas -1020 m curves could be increased． Construction accesss scor Cuttings $>19 \mathrm{~m}$ through unidentified material．
15100	15150			2		3	2	．	．	．	．	．		。	－		Alignment length scoring skewed Bendiness dictated by high impact areas－1020m curves could be increased． Cuttings $>19 \mathrm{~m}$ through unidentified material． Level difference due to slopes of existing topography．
15150	15200		S	2		3	2	．	。	．	．	。	3	。	－		Alignment length scoring skewed by one short alignment out of 4 ． Bentiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards Level difference due to slopes of existing top Level difference due to slopes of existing topography．
15200	15250		3	2	－	3	2	．	．	．	．	．	，	。	，	，	
15250	15300		3	2	－	3	2	．	．	－	．	。	，	。	－	，	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves Construction access score could be revised downwards． Cuttings $>19 \mathrm{~m}$ through unidentified material． Level difference due to slopes of existing topography．
15300	15350		3	2	－	3	2	．	－	－	．	。		。	，	\％	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography
15350	15400			－		．	－	。	。	。	．	。		。	．		Aignment lengt scoring Bendiness dictated by high impact areas－ 1020 m curves could be increased． Cuttings $>19 \mathrm{~m}$ through unidentified material Level difference due to slopes of existing topography．
15400	15450		3	2		3	2	．	。	－	－	。		。	，	\％	Alignment length scoring skewed by one short alignment out of 4 Construction aceess high impact areas－ 1020 m curves Cuttings $>19 \mathrm{~m}$ through unidentified material． Level difference due to slopes of existing topography．
15450	15500			2		3	－	．	．	．	．	．		。	，		Aignment length storing Bendiness dictated by high impact areas－ 1020 m curves could be increased． Cuttings $>19 \mathrm{~m}$ through unidentified material． Level difference due to slopes of existing topography．
${ }^{15500}$	${ }^{15550}$		3	2	－	3	2	．	。	．	．	。	S	。	－		
15550	15600		3	2	－	．	2	．	。	．	．	．	－	。	．		Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased． Cuttings $>19 \mathrm{~m}$ through unidentified mater downwards． Level difference due to slopes of existing topography．
${ }^{15600}$	${ }^{15650}$	2	3	2	－	3	2	－	。	。	．	。		．	，		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Cuttings $>19 \mathrm{~m}$ through unidentified material． Level difference due to slopes of existing topography．
15650	15700	－	3	2	－	3	2	．	。	－	－	－	．	。	．		Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased． Cuttings $>19 \mathrm{l}$ ans score could be revised downwards． Level difference due to slopes of existing due to slopes of existing topography，
15700	15750		3	2	－	．	－	．	．	．	．	－		。	．		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Cuttings $>19 \mathrm{~m}$ through unidentified material Level difference due to slopes of existing topography．
15750	15800	－	．	2	－	3	2	．	－	－	－	．	－	。	－	，	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
${ }^{15800}$	${ }^{15850}$		3	2	－	．	2	－	。	。	。	。		。	\rightarrow		Alignment length scoring skewed by one Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Cuttings $>19 \mathrm{~m}$ through unidentified material Level difference due to slopes of existing topography．
15850	15900	－	3	2	－	3	2	．	．	－	．	．	－ 3	．	，	，	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－1020m curves could be increased Construction access score could be revised downwards． Level difference due to slopes of existing topography．
15900	${ }^{15950}$	－	2			．		－	\bigcirc	－	－	．		－	－	－	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Cuttings $>19 \mathrm{~m}$ through unidentified material． Level difference due to slopes of existing topography．
15950	16000	2	－	2	＋	3	－	－	－	－	－	－	．	。	－	\therefore	
16000	16050	2	．	$\stackrel{2}{2}$	－	3	\div	－	－	\bigcirc	－	\bigcirc	－	。	$\stackrel{5}{5}$	s	
16100	16150	2	－	2	1	3	\bigcirc	\bigcirc	－	\bigcirc	－	－		－		－	
16150	16200	2	1	2	－	3	－	－	－	－	\bigcirc	－	\cdots	。	s	S	
16200	${ }^{16250}$			2		3		。	。	－	。	。	－	。	－		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． 6．
16250	16300		2	2	－	3	2	2	。	。	．	。		．	．		Alignment length scoring skew Bendiness dictated by high impact areas－ 1020 m curves could be increased． Structure required－clearance $>20 \mathrm{~m}$ and span Embankments $>10 \mathrm{~m}$ on compressible soils． Level difference due to slopes of existing topography．
16300	16350		2	2		3	．	2	．	．	．	．	．	2．	－		Algnment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased Disruption assumed due to proximity to insch local access roads． Structure required－clearance >20 mand span $>65 \mathrm{~m}$ ． Embankments $>10 \mathrm{~m}$ on compressible soils． Level difference due to slopes of existing topography．
16350	16400		3	2	－	3	－	2	－	－	．	。	＋	${ }_{2}$	7		Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased Disruption assumed due to proximity to Insch local access roads． Embankmeqnis $>10 \mathrm{~m}$ and C ． 20 mand span $>65 \mathrm{~m}$ ． Level difference due to slopes of existing top slopes of existing topography．
${ }^{16400}$	${ }^{16450}$		2	2	－	．	。	2	。	。	。	。	．	$\underbrace{}_{2}$	－	－	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas -1020 m curves could be Disruption assumed due to proximity to Insch local access reads Structure required－clearance >20 mand span $>65 \mathrm{~m}$ ． Level difference due to slopes of existing vel difference due to slopes of existing topography．
16450	16500	2	－	2	1	3	－	2	－	－	－	－	．	2	－	－	Alignment length scoring skewed by one short alignment out of 4 Bendiness dictated by high impact areas -1020 m curves could be increased． Structure required clearante >2 mand $s p a n>65 \mathrm{~m}$ ． Embankments $>10 \mathrm{~m}$ on compressible soils． Level difference due to slopes of existing topography．
116500	16550	，	4	－	－	3	－		－	－	－	，	－	－	－	s	
			2				2		－		．	－	－	2	－		
16600	16650		2	－	－	3	2	．	。	－	－	－	．	2	\cdots	＋	
16650	16700	2	2	2	－	3	1	－	\bigcirc	－	－	－	－	2	－	${ }^{5}$	
16700	16750	2	$\stackrel{2}{2}$	2	\pm	3	\because	\div	－	\div	\div	\div	－	2	$\stackrel{5}{4}$	$\stackrel{ }{ }$	
16800	16850	2	2	2		3	\bigcirc	\bigcirc	－	－	．	－	－	－	4	．	
	16900																

16900	16950	2	1	2	\pm	3	。	。	。	。	。	。	3	。	s		
16950	17000	2	1	2	\pm	3	－	－	－	－	－	－	3	。	s	，	
17000	17050	2	1	2	－	3	－	。	－	－	－	－	3	。	5	5	
17050	17100																
		：	。	2	－	3	－	－	－	。	－	。	3	。	－		
17100	17150																
		2	－	2	\pm	3	4	－	－	－	－	－	3	。	\therefore	．	
17150	17200	2	－	2	1	3	。	－	－	－	－	－	3	－	－	s	
17200	17250	2	1	2		3	－	－	－	－	。	－	3	。	s	s	
17250	17300																
		2	1	－	－	3	－	－	－	－	－	－	3	。	－	－	
17300	17350																
		2	2	2	－	3	－	－	－	－	－	－	3	。	7		
${ }^{17350}$	17400																
		2	2	2	－	3	2	－	－	－	－	－	3	－	－	s	
17400	17450																
		2	3	2	－	3	2	－	－	－	－	－	3	。	7	\rightarrow	
17450	17500																
		2	3	2	－	3	： 2	－	－	－	－	－	3	。	7		
17500	17550																
		2	$=$	2	\pm	3	2	－	－	－	－	－	3	。	7	，	
17550	17600																
																	Nateme
		：	2	2	－	3	$=$	－	－	－	－	－	3	。	7		
17600	17650																
		：	2	2	－	3	．	－	－	。	－	－	3	。	－		
17650	17700																
					－	3		－			－	。		。	－		
17700	17750	2	2	2	－	3	－	\bigcirc	－	－	－	－	，	－	\therefore	${ }^{5}$	
17750	17800	2	4	2	4	3	－	－	－	\bigcirc	－	－	＋	2	$\stackrel{4}{4}$	4	
17800	17850	2	4	2	4	3	。	。	。	。	－	。	．	2	$\stackrel{4}{4}$	$\stackrel{ }{ }$	
17850	17900	2	1	2	$-$	3	－	。	。	－	。	－	－	2	－	．	
17900	17950	2	2	2	－	3	－	。	－	－	－	－	1	2	－	－	
17950	18000																
18000	18050	2	2	2	\cdots	3	－	。	－	－	－	。	1	2	－	\therefore	込
18050	18100												1	2	s	3	
		2	2	2	－	3		－	－	－	－	－	1	2	\therefore	－	
18100	18150																
																	Ateme
18150	18200							－	。	．	－	－			－		
18150	18200																
																	为
		2	3	2	－	3	：	－	－	－	－	－	1	－	－	－	
18200	18250																
		2	3					－	－	－	－	－	3	－	7		
18250	18300																
		：	3			，		－	－	。	．	－	，	。	，		
18300	18350																
																	Nitumetuest
		，															
18350	18400			$=$	－	3		－	。	－	－	－	3	－	．	7	
		：	3	2	－	3	：	－	－	－	－	－	3	。	，		
18400	18450																
		－	3	2	－	，	2	－	－	－	－	－	S	。	，		
18450	18500																－
					－	3		－	。	－	。	。	3	。	\rightarrow		
18500	18550																
18550	18600							－			－	．					
												－	，	－	，		为
18600	18650																atemasame
																	Nitume
														－			
18650	18700													。	\rightarrow		
														。			
18700	18750																
																	Atement west

18750	18800							－			。						
18800	18850	2	1	2	－	3	\bigcirc	－	－	－	－	－	3	。	S	－	
18850	18900	2	4	2	－	3	－	－	－	－	－	－	4	。	－	－	
18900	18950	2	4	2	－	3	－	－	－	－	－	－	3	。	－	－	
18950	19000	2	1	2	－	3	－	－	－	－	－	－	3	。	s		
19000	19050	2	2	2	－	3	－	．	。	．	。	。	，	。	－	．	
19050	19100		2	2	－	3	2	．	．	．	．	。	3	。	，	，	
19100	19150			2		3	2	。	．	．	．	．	3	。	－		
19150	19200		3	2		3	2	．	。	。	．	。	，	。	－	，	
19200	19250					．	2	．	。	．	．	．	3	。	．		
19250	${ }^{19300}$	2	3	2	－	．	2	．	．	．	－	．	3	。	，	－	
19300	19350					3	2	．	．	。	．	．	3	。	，		
19350	19400	2	3	2	－	3	2	．	。	．	．	。	，	。	，	，	
19400	19450	－		2	．	3		－	。	－	－	\bigcirc		。	${ }^{6}$		
19450	19500	2	\bigcirc	2	\square	3	－	\div	。	－	\div	\div	3	－	$\stackrel{5}{5}$	s	
19550	19600	$\stackrel{2}{2}$	\bigcirc	2	－	${ }^{3}$	\div	\div	\div	\div	\div	\div	3	：	$\stackrel{5}{5}$	${ }^{5}$	
19600	19650	－	4	－	$\stackrel{1}{4}$	3	－	－	－	\bigcirc	－	－	3	－	${ }^{\text {s }}$	．	
19650	19700	2	－	2	$\stackrel{1}{4}$	3	－	－	－	\bigcirc	－	－	3	－	s	s	
19700	19750	2	\bigcirc	2	\cdots	3	\bigcirc	\div	－	－	\bigcirc	－	1	1	3	3	
19800	19850	\sim	．	$\stackrel{2}{2}$	$\stackrel{-}{1}$	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\because	\div	－	1	${ }_{3}$	3	
19850	19900	2	4	2	$\stackrel{-}{-}$	，	－	－	\bigcirc	－	－	－	．	－	${ }^{\text {a }}$	．	
19900	19950	2	4	2	4	3	－	－	－	－	－	－	$\stackrel{1}{4}$	－	3	3	
19950 2000	20000	$\stackrel{2}{2}$	1	2	－	3	\bigcirc	\because	\bigcirc	－	\bigcirc	．	1	－	4	$\stackrel{4}{4}$	
20050	20100	${ }^{2}$	4	2	1	3	－	4	\bigcirc	\div	\div	－	1	－	$\stackrel{5}{5}$	$\stackrel{3}{5}$	
20100	20150	2	4	2	$\stackrel{1}{4}$	3	\bigcirc	${ }^{-}$	－	－	－	－	．	1	\checkmark	4	
20150	20200	2	1	2	4	3	－	－	－	－	－	－	1	1	3	，	
20200	20250	－	\pm	$\stackrel{2}{2}$	－	3	\bigcirc	\bigcirc	－	－	\bigcirc	。	－	－	3	${ }^{3}$	
20300	20350	2	\div	$\stackrel{2}{2}$	$\stackrel{1}{4}$	${ }^{3}$	\bigcirc	\div	\bigcirc	\div	\div	\bigcirc	$\stackrel{1}{3}$	－	${ }^{3}$		
20350	20400	2	1	2	1	3	\bigcirc	－	－	－	－	\bigcirc	3	－	s	．	
20400	20450	2	－	2	．	－3	．	。	．	．	。	。	，	。	－	－	
20450	${ }^{20500}$	－				3		。	．	。	．	。			．		
20500	20550	2	3	2	－	．	2	．	。	．	．	。	，	。	．	，	
20550	20600						2	。	。	．	。			。	，		
20600	20650	2	3	2	\pm	3	2	。	。	。	．	。	3	。	，	－	
20650	20700	2	3	2	－	．	2	．	．	．	．	。	3	。	，	，	
20700	20750	2	．	2	－	3	3	。	。	．	．	．	3	。	．	．	
20750	20800		3	2	－	．	3	．	．	．	．	。		。	－	．	
20800	20850	－	3	2	－	3	3	－	。	。	。	．	3	。	－		
20850	20900			－			2	．	．	．	．	－	3	。	．		
20900	${ }_{21000}^{20950}$	2					2	。	。	．	．	。			，	－	
2^{20950}	${ }^{210050}$			2			2	－		－	－			－	7		
			3	2	4	3	2	－	－	－	－	－	3	－	，	7	
21050	21100																

21100	21150		－	－	－	3	1	－	－	－	－	－	3		－		Alignment length scoring skewed by one short alignment out of 4 ． Construction access score could be revised downwards． Rock cuttings $>19 \mathrm{~m}$ ．
21150	21200	2	2	2	－	－	\bigcirc	－	－	－	－	－	3	。	－	－	
21200	21250	2	1	2	－	3	－	－	\bigcirc	－	\bigcirc	－	3	。	s	s	
21250	21300	2	．	2	－	3	－	－	－	－	－	。	3	。	．	s	
21300	21350	－2	－	2	－	－3	。	－	\bigcirc	－	0	－	，	。	－	．	
21350	21400	2	．	2	1	3	－	－	－	－	－	－	3	－	5	－	
21400	21450	2	1	2	－	3	－	－	－	－	－	－	3	。	s	．	
21450	21500	2	4	2	－	－	．	。	。	－	．	。	3	。	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
21500	21550	2	．	2	－	3	－	。	．	－	。	。	．	。	－	．	Alignment length scoring skewed by one short alignment out of 4 ． endiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
21550	21600	\therefore	1	2	－	3	－	－	－	－	\bigcirc	\bigcirc	3	－	$\stackrel{-}{5}$	－	
21600	21650	$=$	1	2	－	3	－	－	－	－	－	－	3	－	－	．	
21650	21700	2	4	2	1	3	－	－	－	－	－	－	3	－	5	．	
21700	21750	2	－	2	－	3	－	－	－	－	－	－	3	。	s	－	
21750	21800	2	2	2	－	3	－	－	－	－	－	－	3	。	s	．	
21800	21850	2	2	2	－	3	－	－	－	－	－	－	3	。	s	．	
21850	21900	2	1	2	－	3	－	－	－	－	－	－	3	。	－	s	
21900	21950	2	1	2	1	3	－	－	－	－	－	－	3	。	s	s	
21950	22000	2	－	2	\pm	3	3	。	。	。	。	。	3	。	．	－	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction access score could be revised downwards． Embankments $>5 \mathrm{~m}$ on peat． Embankments＞5m on peat．
22000	22050	－	－	2	-1	3	3	。	－	。	－	－	3	。	－	．	Bendiness dictated by high impact areas－ 1020 m curves could be increased． Emmonkments 5 Sm on peat
22050	22100	－	1	2	－	3	－	－	－	－	－	－	3	－	s	．	
22100	22150	\therefore	1	2	－	3	－	－	－	－	－	－	3	。	－	－	
22150	22200	2	－	2	1	3	－	－	－	－	－	－	3	。	－	－	
22200	22250	2	1	2	1	3	－	－	－	－	－	－	3	。	5	．	
22250	22300	\therefore	4	2	-1	3	－	－	－	－	－	－	3	。	s	s	
22300	22350	2	1	2	4	3	－	－	－	－	\bigcirc	－	3	。	－	－	
22350	22400	\therefore	1	2	－	3	－	－	－	－	－	－	3	－	${ }^{5}$	－	
22400	22450	\therefore	4	2	$-$	3	－	－	－	－	。	－	3	。	－	．	
22450	22500	－	－	2	－	3	－	－	－	－	－	－	3	－	5	s	
22500	22550	\therefore	－	2	4	3	\bigcirc	\bigcirc	－	－	\bigcirc	－	3	。	－	－	
22550	22600	－	1	2	1	3	－	－	－	－	－	－	3	。	s	s	
22600	22650	.2	4	2	－	3	－	－	－	－	－	－	3	－	s	－	
22650	22700	\therefore	1	2	1	3	\bigcirc	－	－	－	－	－	3	－	s	－	
22700	22750	\therefore	－	2	1	3	。	－	－	－	－	－	${ }^{3}$	。	－	－	
22750	22800	\therefore	－	－	1	3	－	－	－	－	－	－	，	－	－	．	
22800	22850	2	－	2	－	3	－	－	－	－	－	－	3	－	－	－	
22850	22900	\therefore	－	2	1	3	。	0	－	－	－	－	3	。	－	－	
22900	22950	－	4	2	4	3	－	－	－	－	－	－	3	。	s	．	
22950	23000	2	1	2	－	3	－	－	－	－	－	－	3	。	5	．	
23000	23050	2	4	2	4	3	\bigcirc	0	－	－	－	－	3	。	－	－	
23050	23100	2	1	2	1	3	－	－	－	－	－	－	，	－	s	s	
23100	23150	\therefore	－	2	1	3	－	－	－	－	－	－	－	。	s	－	
23150	23200	2	2	2	-1	3	－	。	．	。	．	。	3	。	．	．	Alignment length scoring skewed by one short alignment out of 4 ． Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
23200	${ }_{23300}^{23250}$	2	2	2	－	${ }^{3}$	－	。	。	。	．	。	3	。	－	．	Alignment lenght yoorng stewed by one short alignnent out of 4 Sendiness dicated by yhiet impact taress－ 1222 m curves could be increased． Level difference due to stopes of exsiting topograpiv．
23250	${ }^{233500}$	－	2	2	－	－	－	。	。	。	．	。	3	。	－	．	Aligementeregst troming seemed by one thon atigment aut of Level difference due to slopes of existing topography．
23300	23350	2	2	2	－	3	－	。	。	－	．	。	3	。	．	．	
23350	${ }^{23400}$	－2	2	2	－	3	．	。	。	。	－	。	3	。	．	．	Aligment terggh sooming seewed by one shor atigmenent out of 4 Bendiness dxatated by hight impatat areas－ 10202 m curves could be incresesed． Level difference due to stopes of exsiting topography．
23400	${ }^{23450}$	2	2	2		3	．	。	．		．	。	3	。	－	．	 Level difference due to slopes of existing topography．
23450	23500	－2	2	2	－	3	－	。	。	。	。	。	3	。	．	－	Aligment lenght soring stewed by one shara tigignent out of 4 Evel differerece due to topes of exsiting topography．
23500	${ }_{23600}^{23550}$	－	2	2	1	3	．		。		．	。	．	。	－	．	Alignment length scoring skewed by one short alignment out of 4 endiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards． Level difference due to slopes of existing topography．
${ }^{23550}$	${ }^{23600}$	2	－	－	－	3	1	。	。	。	。	。	3	。	－	．	
23600	${ }^{23650}$	－	2	2	－	－ 3	\bigcirc	．	．	－	．	．	3	。	－	－ 5	
23650	23700	－	－	2	－	－ 3	。	－	．	－	\bigcirc	－	3	。	－	．	Alignenen lenght soringe kewee by one short alignment out of 4 Bendiness dictated by impact areas－ 1020 m curves could be increased Level difference due to slopes of existing topography．
23700	23750	2	－	2	－	3	。	。	．	．	．	．	3	。	－	．	Bendiness dictated by high impact areas－ 1020 m curves could be increased． Construction atcess score Level difference due to slopes of existing topography．
23750	23800	2	－	2	－	－ 3	。	。	。	－	。	－	3	。	．	．	
23800	23850		．	2	．	3	\bigcirc	\bigcirc	－	－	－	－	3	\bigcirc	－	－	
23850	23900	2	4	2	－	3	－	－	－	－	－	－	－	。	－	S	
23900	23950	－	\cdots	，	－	3	－	－	－	－	－	－	3	。	s	s	
23950	24000					3					－	。	3	。	－	．	Alignment length scoring skewed by one short alignment out of 4. Bendiness dictated by high impact areas -1020 m curves could be increased． Construction access score could be revised downwards．
24000	24050																
24050	24100																

